Comparative Mitogenome of Phylogenetic Relationships and Divergence Time Analysis within Potamanthidae (Insecta: Ephemeroptera)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Sequencing and mt Genome Assembling
2.3. mtDNA Annotation and Structural Analysis
2.4. Phylogenetic Analyses
2.5. Divergence Time Analysis
2.6. Positive Selection Analysis
3. Results
3.1. mtDNA Structure Analysis
3.2. Phylogeny Analyses
3.3. Analysis of Divergence Time
3.4. Analysis of Positive Selection
4. Discussion
4.1. The Composition of mt Genomes
4.2. The Phylogeny of Potamanthidae
4.3. The Evolutional Time of Potamanthidae
4.4. Positive Selection Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobus, L.M.; Macadam, C.R.; Sartori, M. Mayflies (Ephemeroptera) and their contributions to ecosystem services. Insects 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Jacobus, L.M.; Salles, F.F.; Price, B.E.N.; Pereira-Da-Conceicoa, L.; Dominguez, E.; Suter, P.J.; Molineri, C.; Tiunova, T.M.; Sartori, M. Mayfly taxonomy (Arthropoda: Hexapoda: Ephemeroptera) during the first two decades of the twenty-first century and the concentration of taxonomic publishing. Zootaxa 2021, 4979, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Brittain, J.E. Order Ephemeroptera. In Ecology and General Biology, Vol I: Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: New York, NY, USA, 2015; pp. 873–891. [Google Scholar]
- Bae, Y.J.; McCafferty, W.P. Phylogenetic systematics of the Potamanthidae (Ephemeroptera). Trans. Am. Entomol. Soc. 1991, 117, 1–143. [Google Scholar]
- Kamsoi, O.; Ventos-Alfonso, A.; Casares, F.; Almudi, I.; Belles, X. Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). Proc. Natl. Acad. Sci. USA 2021, 118, e2105272118. [Google Scholar] [CrossRef] [PubMed]
- Brittain, J.E. Biology of mayflies. Annu. Rev. Entomol. 1982, 27, 119–147. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Bae, Y.J. Descriptions of Rhoenanthus sapa, new species, and larval stage of R. magnificus Ulmer (Ephemeroptera: Potamanthidae) from Vietnam. Aquat. Ins. 2010, 26, 9–17. [Google Scholar] [CrossRef]
- McCafferty, W.P.; Bae, Y.J. Filter-feeding habits of the larvae of Anthopotamus (Ephemeroptera: Potamanthidae). Ann. Limnol. 2009, 28, 27–34. [Google Scholar] [CrossRef]
- Kwanboon, S.; Sartori, M.; Boonsoong, B.J.Z. Behningiidae and Potamanthidae (Insecta, ephemeroptera) in Thailand. Zookeys 2021, 1067, 57. [Google Scholar] [CrossRef] [PubMed]
- Bartholomae, P.G.; Meier, P.G. Notes on the life history of Potamanthus myops in southeastern Michigan (Ephemeroptera: Potamanthidae). Great Lakes Entomol. 1977, 10, 10. [Google Scholar] [CrossRef]
- Mayorga, A.; Bae, Y.J. Allometry of exaggerated mandibular tusks in the burrowing mayfly Rhoenanthus coreanus (Ephemeroptera: Potamanthidae). Entomol. Res. 2021, 51, 263–269. [Google Scholar] [CrossRef]
- Molineri, C.; Emmerich, D. New species and new stage descriptions of Campsurus majorspecies group (Polymitarcyidae: Campsurinae), with first report of silk-case construction in mayfly nymphs. Aquat. Ins. 2010, 32, 265–280. [Google Scholar] [CrossRef]
- Li, M.Y.; Deng, M.H.; Zhou, C.F. The exact morphology of the species Ephemera pieli Navás, 1934 from Eastern China (Ephemeroptera: Ephemeridae). Zootaxa 2023, 5271, 345–354. [Google Scholar] [CrossRef]
- Miller, D.B.; Bartlett, S.; Sartori, M.; Breinholt, J.W.; Ogden, T.H. Anchored phylogenomics of burrowing mayflies (Ephemeroptera) and the evolution of tusks. Syst. Entomol. 2018, 43, 692–701. [Google Scholar] [CrossRef]
- Ding, M.; Gong, D.; Zhou, C. The imaginal morphology of the species Kangella brocha (Kang and Yang, 1995) from southern China (Ephemeroptera: Ephemerellidae). J. Insect Sci. 2024, 45, 1–12. [Google Scholar] [CrossRef]
- Day, W. New species and notes on California mayflies. II (Ephemeroptera). Pan-Pac Entomol. 1954, 30, 1–29. [Google Scholar]
- Pictet, F.J. Histoire Naturelle Générale et Particulière des Insectes Névroptères; Kessmann, C.J., Cherbuliz, A., Eds.; J. Kessmann: Geneva, Switzerland, 1841; Volume 1843–1845, pp. 1–300. [Google Scholar]
- Kluge, N.J. The Phylogenetic System of Ephemeroptera; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; p. 442. [Google Scholar]
- Li, W.J.; Zhou, C.F. A detailed comparison of two species in the genus Potamanthus Pictet, 1843 from China (Ephemeroptera, Potamanthidae). ZooKeys 2022, 1125, 193–205. [Google Scholar] [CrossRef]
- Edmunds, G.F.J.S.Z. The principles applied in determining the hierarchic level of the higher categories of Ephemeroptera. Syst. Zool. 1962, 11, 22–31. [Google Scholar] [CrossRef]
- McCafferty, W.P. Higher classification of the burrowing mayflies (Ephemeroptera: Scapphodonta). Entomol. News 2004, 115, 84–92. [Google Scholar]
- Ogden, T.H.; Whiting, M.F. Phylogeny of Ephemeroptera (mayflies) based on molecular evidence. Mol. Phylogenet. 2005, 37, 625–643. [Google Scholar] [CrossRef]
- Ogden, T.H.; Gattolliat, J.L.; Sartori, M.; Staniczek, A.H.; SoldÁN, T.; Whiting, M.F. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): Combined analysis of morphological and molecular data. Syst. Entomol. 2009, 34, 616–634. [Google Scholar] [CrossRef]
- Ogden, T.H.; Breinholt, J.W.; Bybee, S.M.; Miller, D.B.; Sartori, M.; Shiozawa, D.; Whiting, M.F. Mayfly phylogenomics: Initial evaluation of anchored hybrid enrichment data for the order Ephemeroptera. Zoosymposia 2019, 16, 167–181. [Google Scholar]
- Wang, L.; Li, B.; Jiang, J.; Tong, X. The complete mitochondrial genome of Ephemera serica (Ephemeroptera: Ephemeridae) and phylogenetic analysis. Mitochondrial DNA Part B 2022, 7, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Shen, C.Y.; Zhao, Y.Y.; Lin, Y.J.; Wu, L.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The genetic diversity and the divergence time in extant primitive mayfly, Siphluriscus chinensis Ulmer, 1920 using the mitochondrial genome. Genes 2022, 13, 1780. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Mu, P.X.; Zhou, C.F. Systematics of Potamanthodes nanchangi Hsu, 1936 (Ephemeroptera: Potamanthidae). Zootaxa 2022, 5213, 149–158. [Google Scholar] [CrossRef]
- Balasubramanian, C.; Muthukatturaja, M.; Anbalagan, S. A new mayfly species of Rhoenanthus (Ephemeroptera: Potamanthidae) from Peninsular India. Zootaxa 2019, 4664, 293–300. [Google Scholar] [CrossRef]
- García-Girón, J.; Múrria, C.; Arnedo, M.A.; Bonada, N.; Cañedo-Argüelles, M.; Derka, T.; Fernández-Calero, J.M.; Li, Z.; Tierno de Figueroa, J.M.; Xie, Z.; et al. A time-calibrated ‘tree of life’ of aquatic insects for knitting historical patterns of evolution and measuring extant phylogenetic biodiversity across the world. Earth Sci. Rev. 2024, 252, 104767. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Z.T. A new genus and species of Australiphemeridae (Insecta: Ephemeroptera) in mid-Cretaceous Kachin amber of northern Myanmar. Cretaceous Res. 2023, 146, 105485. [Google Scholar] [CrossRef]
- McCafferty, W.P.; Santiago-Blay, J.A. A New Cretaceous Mayfly from Burmese Amber (Ephemeroptera: Australiphemeridae). Entomol. News. 2008, 119, 492–496. [Google Scholar] [CrossRef]
- Kukalová-Peck, J. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Can. J. Zool. 1985, 63, 933–955. [Google Scholar] [CrossRef]
- Kluge, N. A new suborder of Thysanura for the Carboniferous insect originally described as larva of Bojophlebia, with comments on characters of the orders Thysanura and Ephemeroptera. Zoosyst. Ross. 1996, 4, 71–75. [Google Scholar]
- McCafferty, W.P. Discovery and analysis of the oldest mayflies (Insecta, Ephemeroptera) known from amber. Bull. Soc. Hist. Nat. Toulouse 1997, 133, 77–82. [Google Scholar]
- Barber-James, H.M.; Gattolliat, J.L.; Sartori, M.; Hubbard, M.D. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 2007, 595, 339–350. [Google Scholar] [CrossRef]
- Vuataz, L.; Sartori, M.; Gattolliat, J.L.; Monaghan, M.T. Endemism and diversification in freshwater insects of Madagascar revealed by coalescent and phylogenetic analysis of museum and field collections. Mol. Phylogen. Evol. 2013, 66, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, P.; Chandra, K.; Shukla, A.; Singh, H.; Mehrotra, R.C. First fossil record of a nymph (Ephemeroptera, Teloganellidae) from the Indian subcontinent. Zootaxa 2020, 4838, 137–142. [Google Scholar] [CrossRef]
- Sroka, P.; Godunko, R.J.; Prokop, J. Fluctuation in the diversity of mayflies (Insecta, Ephemerida) as documented in the fossil record. Sci. Rep. 2023, 13, 16052. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, L.; Ayivi, S.P.G.; Storey, K.B.; Ma, Y.; Yu, D.N.; Zhang, J.Y. Cryptic species exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from studies of complete mitochondrial genomes. Insects 2022, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C. Mitochondrial Fusion and Fission in Mammals. Annu. Rev. Cell Dev. Biol. 2006, 22, 79–99. [Google Scholar] [CrossRef]
- Goodsell, D.S. Mitochondrion. Biochem. Mol. Biol. Educ. 2010, 38, 134–140. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Gai, Y.; Song, D.; Zhou, K. The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 2008, 424, 18–24. [Google Scholar] [CrossRef]
- Castellana, S.; Vicario, S.; Saccone, C. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol. Evol. 2011, 3, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.L. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 2014, 39, 400–411. [Google Scholar] [CrossRef]
- Nakao, M.; McManus, D.P.; Schantz, P.M.; Craig, P.S.; Ito, A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 2006, 134, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, L.; Li, K.; Hong, Y.; Storey, K.B.; Zhang, J.; Yu, D. Nine mitochondrial genomes of Phasmatodea with two novel mitochondrial gene rearrangements and phylogeny. Insects 2023, 14, 485. [Google Scholar] [CrossRef]
- Shen, S.Q.; Cai, Y.Y.; Xu, K.K.; Chen, Q.P.; Cao, S.S.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Pedetontus zhejiangensis (Microcoryphia: Machilidae) and its phylogeny. Mitochondrial DNA Part B 2020, 5, 3143–3145. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.S.; Song, S.L.; Suana, I.W.; Eamsobhana, P.; Lim, P.E. Complete mitochondrial genome of Orthetrum dragonflies and molecular phylogeny of Odonata. Biochem. Syst. Ecol. 2016, 69, 124–131. [Google Scholar]
- Lee, E.M.; Hong, M.Y.; Kim, M.I.; Kim, M.J.; Park, H.C.; Kim, K.Y.; Lee, I.H.; Bae, C.H.; Jin, B.R.; Kim, I. The complete mitogenome sequences of the palaeopteran insects Ephemera orientalis (Ephemeroptera: Ephemeridae) and Davidius lunatus (Odonata: Gomphidae). Genome 2009, 52, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, L.P.; Lin, Y.J.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. Phylogenetic relationships and divergence dating of Mantodea using mitochondrial phylogenomics. Syst. Entomol. 2023, 48, 644–657. [Google Scholar] [CrossRef]
- Li, K.; Yu, S.W.; Hu, H.; Feng, Y.F.; Storey, K.B.; Ma, Y.; Zhang, J.Y.; Yu, D.N. The phylogenetic relationship of Lamiinae (Coleoptera: Cerambycidae) using mitochondrial genomes. Genes 2023, 15, 13. [Google Scholar] [CrossRef]
- Zong, S.B.; Li, Y.L.; Liu, J.X.; Kelley, J. Genomic architecture of rapid parallel adaptation to fresh water in a wild fish. Mol. Biol. Evol. 2021, 38, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Gojobori, T.; Kryazhimskiy, S.; Plotkin, J.B. The Population Genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar]
- Ballard, J.W.O.; Kreitman, M. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 1995, 10, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Insight into the phylogenetic relationships among three subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with low-temperature selection pressure analyses using mitogenomes. Insects 2021, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.L.; Yang, Y.; Xu, S.; Xu, J.; Guo, Y.; Yang, G. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS ONE 2014, 9, e99120. [Google Scholar]
- Li, X.D.; Jiang, G.F.; Yan, L.Y.; Li, R.; Mu, Y.; Deng, W.A. Positive selection drove the adaptation of mitochondrial genes to the demands of flight and high-altitude environments in Grasshoppers. Front. Genet. 2018, 9, 605. [Google Scholar] [CrossRef]
- Yuan, M.L.; Zhang, Q.L.; Zhang, L.; Jia, C.L.; Li, X.P.; Yang, X.Z.; Feng, R.Q. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. Mol. Phylogen. Evol. 2018, 122, 116–124. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [PubMed]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 1–31. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogen. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S.; Battistuzzi, F.U. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Tan, M.; Meng, G.; Yang, S.; Su, X.; Liu, S.; Song, W.; Li, Y.; Wu, Q.; Zhang, A.; et al. Multiplex sequencing of pooled mitochondrial genomes—A crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 2014, 42, e166. [Google Scholar] [CrossRef]
- Rutschmann, S.; Chen, P.; Zhou, C.; Monaghan, M.T. Mitochondrial genomes infer phylogenetic relationships among the oldest extant winged insects (Palaeoptera). bioRxiv 2017, 164459. [Google Scholar]
- Rutschmann, S.; Chen, P.; Zhou, C.; Monaghan, M.T. Three mitochondrial genomes of early-winged insects (Ephemeroptera: Baetidae and Leptophlebiidae). Mitochondrial DNA Part B 2021, 6, 2969–2971. [Google Scholar] [CrossRef]
- Xu, X.D.; Jia, Y.Y.; Dai, X.Y.; Ma, J.L.; Storey, K.B.; Zhang, J.Y.; Yu, D.N. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) from Fujian and the phylogeny of Caenidae within Ephemeroptera. Mitochondrial DNA Part B 2019, 5, 192–193. [Google Scholar]
- Cai, Y.Y.; Gao, Y.J.; Zhang, L.P.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) and the phylogeny of Ephemeroptera in Pterygota. Mitochondrial DNA Part B 2018, 3, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, W.; Ma, Z.; Zhou, C. Novel gene rearrangement pattern in the mitochondrial genomes of Torleya mikhaili and Cincticostella fusca (Ephemeroptera: Ephemerellidae). Int. J. Biol. Macromol. 2020, 165, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.D.; Jia, Y.Y.; Cao, S.S.; Zhang, Z.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation oftrnIrearrangement and their phylogenetic relationships. PeerJ 2020, 8, e9740. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Wu, L.; Lin, Y.J.; Ayivi, S.P.G.; Storey, K.B.; Zhang, J.Y.; Yu, D.N. The first complete mitochondrial genome of Hexagenia rigida Mc Dunnough, 1924 (Ephemeroptera: Ephemeridae) and its phylogeny. Mitochondrial DNA Part B 2022, 7, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, R.; Zhu, B.; Zheng, X.; Zhou, C. Comparative mitogenome analyses of subgenera and species groups in Epeorus (Ephemeroptera: Heptageniidae). Insects 2022, 13, 599. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.M.; Zhang, S.S.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Isonychia kiangsinensis (Ephemeroptera: Isonychiidae). Mitochondrial DNA Part B 2018, 3, 541–542. [Google Scholar] [CrossRef]
- Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Xu, X.D.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Choroterpes (Euthralus) yixingensis (Ephemeroptera: Leptophlebiidae) and its mitochondrial protein-coding gene expression under imidacloprid stress. Gene 2021, 800, 145833. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.N.; Yu, P.P.; Zhang, L.P.; Storey, K.B.; Gao, X.Y.; Zhang, J.Y. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. PeerJ 2021, 9, e11402. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, J.C.; Zhou, C.F. The phylogeny of Ephemeroptera in Pterygota revealed by the mitochondrial genome of Siphluriscus chinensis (Hexapoda: Insecta). Gene 2014, 545, 132–140. [Google Scholar] [CrossRef]
- Song, N.; Li, X.; Yin, X.; Li, X.; Yin, J.; Pan, P. The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships. Sci. Rep. 2019, 9, 17765. [Google Scholar] [CrossRef]
- Liegeois, M.; Sartori, M.; Schwander, T.; Orive, M. Extremely widespread parthenogenesis and a trade-off between alternative forms of reproduction in mayflies (Ephemeroptera). J. Hered. 2021, 112, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Kück, P.; Meid, S.A.; Groß, C.; Wägele, J.W.; Misof, B. AliGROOVE–visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinf. 2014, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A. Figtree Version 1.4.0. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 12 December 2023).
- Serif (Europe) Ltd. Affinity Designer 2. 2014. Available online: https://affinity.serif.com/zh-cn/ (accessed on 12 December 2023).
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Godunko, R.J.; Martynov, A.V.; Staniczek, A.H. First fossil record of the mayfly family Vietnamellidae (Insecta, Ephemeroptera) from Burmese amber confirms its Oriental origin and gives new insights into its evolution. ZooKeys 2021, 1036, 99. [Google Scholar] [CrossRef]
- Huang, J.D.; Ren, D.; Sinitshenkova, N.D.; Shih, C.K. New fossil mayflies (Insecta: Ephemeroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Insect Sci. 2008, 15, 193–198. [Google Scholar] [CrossRef]
- Staniczek, A.H.; Godunko, R.J.; Kluge, N.J. Fossil record of the mayfly family Ephemerellidae (Insecta: Ephemeroptera), with description of new species and first report of Ephemerellinae from Baltic amber. J. Syst. Palaeontol. 2018, 16, 1319–1335. [Google Scholar] [CrossRef]
- Staniczek, A.H.; Godunko, R.J.; Krzeminski, W. A new fossil mayfly species of the genus Borinquena Traver, 1938 (Insecta: Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from Miocene Dominican amber. Annal Zool. 2017, 67, 113–119. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A.J.B.e.b. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.L.; Chen, C.J.; Arab, D.A.; Du, Z.G.; He, Y.H.; Ho, S.Y. EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol. Evol. 2019, 9, 3891–3898. [Google Scholar] [CrossRef]
- Mayorga, A.; Lim, C.; Bae, Y.J. Use of mandibular tusks as weapons in the aggressive behavior of the burrowing mayfly Rhoenanthus coreanus (Yoon and Bae, 1985) (Ephemeroptera: Potamanthidae). Aquat. Ins. 2023, 45, 49–59. [Google Scholar] [CrossRef]
- Zhang, D.X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Shields, D.C.; Sharp, P.M. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987, 15, 8023–8040. [Google Scholar] [CrossRef]
- Behura, S.K.; Severson, D.W. Coadaptation of isoacceptor tRNA genes and codon usage bias for translation efficiency in Aedes aegypti and Anopheles gambiae. Insect Mol. Biol. 2011, 20, 177–187. [Google Scholar] [CrossRef]
- Vicario, S.; Moriyama, E.N.; Powell, J.R. Codon usage in twelve species of Drosophila. BMC Evol. Biol. 2007, 7, 226. [Google Scholar] [CrossRef]
- Behura, S.K.; Severson, D.W. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS ONE 2012, 7, e43111. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Glasgow, J.; Jaschke, P.R.; Bawazer, L.A.; Munson, M.S.; Cochran, J.R.; Endy, D.; Salit, M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 2017, 45, 3615–3626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, R.; Zhou, C. Complete mitochondrial genomes of Epeorus carinatus and E. dayongensis (Ephemeroptera: Heptageniidae): Genomic comparison and phylogenetic inference. Gene 2021, 777, 145467. [Google Scholar] [CrossRef]
- Cao, S.S.; Xu, X.D.; Jia, Y.Y.; Guan, J.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Choroterpides apiculata (Ephemeroptera: Leptophlebiidae) and its phylogenetic relationships. Mitochondrial DNA Part B 2020, 5, 1159–1160. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Kjer, K.M. Ancient rapid radiations of insects: Challenges for phylogenetic analysis. Annu. Rev. Entomol. 2008, 53, 449–472. [Google Scholar] [CrossRef] [PubMed]
- Gillies, M. The African Euthyplociidae (Ephemeroptera). Aquat. Ins. 1980, 2, 217–224. [Google Scholar] [CrossRef]
- Kalugina, N. Changes in the subfamilian composition of midges (Diptera, Chironomidae) as indicator of probable eutrophication of the Late Mesozoic water bodies. Byulleten Mosk. Obs. Ispyt. Prir. Biology 1974, 79, 45–55. [Google Scholar]
- Labandeira, C.C. The rise and diversification of insects. In Palaeobiology II; Briggs, D.E.G., Crowther, P.R., Eds.; Blackwell Science: London, UK, 2001; pp. 82–88. [Google Scholar]
- Lord, R.J. Potamanthus, Taxonomy, Ecology, Life History. Master’s Thesis, University of Michigan, Ann Arbor, Michigan, 1975; p. 65. [Google Scholar]
- Gao, T.; Shih, C.; Ren, D. Behaviors and interactions of insects in Mid-Mesozoic ecosystems of northeastern China. Annu. Rev. Entomol. 2021, 66, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Polegatto, C.; Zamboni, J. Inferences regarding the feeding behavior and morphoecological patterns of fossil mayfly nymphs (Insecta Ephemeroptera) from the Lower Cretaceous Santana Formation of northeastern Brazil. Acta Geol. Leopold. 2001, 24, 145–160. [Google Scholar]
- Zhou, C.F.; Peters, J.G. The nymph of Siphluriscus chinensis and additional imaginal description: A living mayfly with Jurassic origins (Siphluriscidae new family: Ephemeroptera). Fla. Entomol. 2003, 86, 345–352. [Google Scholar] [CrossRef]
- Hong, Y.H.; Huang, H.M.; Wu, L.; Storey, K.B.; Zhang, J.Y.; Zhang, Y.P.; Yu, D.N. Characterization of two mitogenomes of Hyla sanchiangensis (Anura: Hylidae), with phylogenetic relationships and selection pressure analyses of Hylidae. Animals 2023, 13, 1593. [Google Scholar] [CrossRef] [PubMed]
- Dotson, E.; Beard, C. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol. Biol. 2001, 10, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Hernansanz-Agustín, P.; Enríquez, J.A. Alternative respiratory oxidases to study the animal electron transport chain. BBA-Bioenerg. 2023, 1864, 148936. [Google Scholar] [CrossRef]
- Cai, L.N.; Zhang, L.H.; Lin, Y.J.; Wang, J.Y.; Storey, K.B.; Zhang, J.Y.; Yu, D.N. Two-fold ND5 genes, three-fold control regions, incRNA, and the “missing” ATP8 found in the mitogenomes of Polypedates megacephalus (Rhacophridae: Polypedates). Animals 2023, 13, 2857. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Y.; Liang, L.; Zhu, Z.H.; Zhou, W.P.; Irwin, D.M.; Zhang, Y.P. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc. Natl. Acad. Sci. USA 2010, 107, 8666–8671. [Google Scholar] [CrossRef] [PubMed]
Specimen No. | Species | Genera | Sampling Localities | Accession No. |
---|---|---|---|---|
01YNAS | Rhoenanthus obscurus | Rhoenanthus | Mengla, Yunnan | PP473793 |
LNDD4 | Rhoenanthus coreanus | Rhoenanthus | Dandong, Liaoning | PP473799 |
02JHGD | Potamanthus sp. 02JHGD | Potamanthus | Jinhua, Zhejiang | PP473796 |
02WZ10 | Potamanthus sp. 02WZ10 | Potamanthus | Wenzhou, Zhejiang | PP473797 |
08HH02 | Potamanthus sp. 08HH02 | Potamanthus | Jianou, Fujian | PP473798 |
HHFK100 | Potamanthus longitibius | Potamanthus | Shangrao, Jiangxi | PP473794 |
LNDD5 | Potamanthus luteus | Potamanthus | Dandong, Liaoning | PP473795 |
Subset | Subset Partitions | Best Model |
---|---|---|
Partition_1 | ND4L_pos1, 16S_pos1, 12S_pos1, 12_pos2, 12_pos3, 16S_pos2 | TVM + I + G |
Partition_2 | COX3_pos1, COX2_pos1, Cyt b_pos1, ATP6_pos1 | GTR + I + G |
Partition_3 | COX1_pos2, CYTB_pos2, COX2_pos2, ATP6_pos2, COX3_pos2 | TVM + I + G |
Partition_4 | COX3_pos3, ATP6_pos3 | TRN + I + G |
Partition_5 | ATP8_pos1, ND2_pos1, ND3_pos1, ND6_pos1 | TVM + I + G |
Partition_6 | ATP8_pos2, ND2_pos2, ND6_pos2, ND3_pos2 | GTR + I + G |
Partition_7 | ND6_pos3, ATP8_pos3 | HKY + I + G |
Partition_8 | COX1_pos1 | GTR + I + G |
Partition_9 | COX1_pos3 | TRN + I + G |
Partition_10 | CYTB_pos3, ND3_pos3, COX2_pos3 | TIM + I + G |
Partition_11 | ND5_pos1, ND1_pos1, ND4_pos1 | GTR + I + G |
Partition_12 | ND5_pos2, ND4_pos2, ND4L_pos2, ND1_pos2 | GTR + I + G |
Partition_13 | ND1_pos3, ND4_pos3, ND5_pos3 | GTR + G |
Partition_14 | ND2_pos3 | TRN + G |
Partition_15 | ND4L_pos3 | TRN + I + G |
Species | mt Genome | PCGs | rRNA | ||||||
---|---|---|---|---|---|---|---|---|---|
A+T% | AT-K | CG-K | A+T% | AT-K | CG-K | A+T% | AT-K | CG-K | |
Rhoenanthus coreanus | 70.2 | −0.048 | −0.219 | 67.9 | −0.196 | −0.163 | 72.2 | 0.058 | 0.296 |
Rhoenanthus obscurus | 69.3 | −0.048 | −0.233 | 65.6 | −0.186 | −0.191 | 70.9 | 0.060 | 0.304 |
Potamanthus sp. 02JHGD | 66.2 | 0 | −0.130 | 64.4 | −0.176 | −0.129 | 69.5 | 0.022 | 0.294 |
Potamanthus sp. 02WZ10 | 67.8 | −0.002 | −0.242 | 64.9 | −0.159 | −0.191 | 70.8 | 0.012 | 0.289 |
Potamanthus sp. 08HH02 | 67.4 | −0.012 | −0.211 | 64.4 | −0.176 | −0.163 | 70.2 | 0.020 | 0.281 |
Potamanthus longitibius | 66.6 | −0.018 | −0.179 | 64.6 | −0.175 | −0.140 | 69.5 | 0.022 | 0.281 |
Potamanthus luteus | 69.7 | −0.036 | −0.228 | 66.6 | −0.170 | −0.176 | 73.2 | 0.025 | 0.301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.-Q.; Gao, Y.-J.; Chen, Y.-X.; Zhan, L.-M.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. Comparative Mitogenome of Phylogenetic Relationships and Divergence Time Analysis within Potamanthidae (Insecta: Ephemeroptera). Insects 2024, 15, 357. https://doi.org/10.3390/insects15050357
Guo Z-Q, Gao Y-J, Chen Y-X, Zhan L-M, Storey KB, Yu D-N, Zhang J-Y. Comparative Mitogenome of Phylogenetic Relationships and Divergence Time Analysis within Potamanthidae (Insecta: Ephemeroptera). Insects. 2024; 15(5):357. https://doi.org/10.3390/insects15050357
Chicago/Turabian StyleGuo, Zhi-Qiang, Ya-Jie Gao, Yu-Xin Chen, Le-Mei Zhan, Kenneth B. Storey, Dan-Na Yu, and Jia-Yong Zhang. 2024. "Comparative Mitogenome of Phylogenetic Relationships and Divergence Time Analysis within Potamanthidae (Insecta: Ephemeroptera)" Insects 15, no. 5: 357. https://doi.org/10.3390/insects15050357
APA StyleGuo, Z. -Q., Gao, Y. -J., Chen, Y. -X., Zhan, L. -M., Storey, K. B., Yu, D. -N., & Zhang, J. -Y. (2024). Comparative Mitogenome of Phylogenetic Relationships and Divergence Time Analysis within Potamanthidae (Insecta: Ephemeroptera). Insects, 15(5), 357. https://doi.org/10.3390/insects15050357