Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Sample Preparation
2.3. Sequence Verification and Phylogenetic Analysis
2.4. RNA Extraction and cDNA Synthesis
2.5. Primer Design and Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
2.6. dsRNA Preparation and Injection
2.7. Methoxyfenozide Stress Experiment and Paraffin Section
2.8. Statistical Analysis
3. Results
3.1. Sequence Analysis of HvCP3L and Phylogenetic Analysis
3.2. Stage-Specific and Tissue-Specific Expression Patterns of HvCP3L
3.3. Silencing of HvCP3L via RNAi
3.4. The Effect of RNAi Silencing HvCP3L on Chitin Synthesis Pathway
3.5. The Phenotypic Analysis and Survival Assay after RNAi
3.6. Effects of Methoxyfenozide on HvCP3L and Phenotype
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Locke, M. The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J. Insect Physiol. 2001, 47, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Oluwatobi, B.; Oksana, S.; Aleksei, G.; Jouni, S. Benefits of insect colours: A review from social insect studies. Oecologia 2020, 194, 27–40. [Google Scholar]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.P.; Kimbrell, D.; Hunkapiller, M.; Hill, R.; Fristrom, J.; Davidson, N. A transposable element that splits the promoter region inactivates a Drosophila cuticle protein gene. Proc. Natl. Acad. Sci. USA 1982, 79, 7430–7434. [Google Scholar] [CrossRef] [PubMed]
- Futahashi, R.; Okamoto, S.; Kawasaki, H.; Zhong, Y.-S.; Iwanaga, M.; Mita, K.; Fujiwara, H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Ioannidou, Z.S.; Theodoropoulou, M.C.; Papandreou, N.C.; Willis, J.H.; Hamodrakas, S.J. CutProtFam-Pred: Detection and classification of putative structural cuticular proteins from sequence alone, based on profile Hidden Markov Models. Insect Biochem. Mol. Biol. 2014, 52, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Olga, V.; Zhe, L.; Jie, D.; Hong, J.; Zhen, Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. Insect Sci. 2019, 27, 998–1018. [Google Scholar]
- Rebers, J.E.; Riddiford, L.M. Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 1988, 203, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.O. Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 2000, 30, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Jasrapuria, S.; Specht, C.A.; Kramer, K.J.; Beeman, R.W.; Muthukrishnan, S. Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions. PLoS ONE 2012, 7, e49844. [Google Scholar] [CrossRef] [PubMed]
- Cornman, R.S.; Willis, J.H. Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol. Biol. 2009, 18, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Duan, B.; Sun, Y.; Ma, L.; Zhu, C.; Shen, B. Preliminary characterization of putative structural cuticular proteins in the malaria vector Anopheles sinensis. Pest Manag. Sci. 2017, 73, 2519–2528. [Google Scholar] [CrossRef]
- Chen, E.-H.; Hou, Q.-L.; Dou, W.; Wei, D.-D.; Yue, Y.; Yang, R.-L.; Yang, P.-J.; Yu, S.-F.; De Schutter, K.; Smagghe, G.; et al. Genome-wide annotation of cuticular proteins in the oriental fruit fly Bactrocera dorsalis, changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses. Insect Biochem. Mol. Biol. 2018, 97, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Vannini, L.; Bowen, J.H.; Reed, T.W.; Willis, J.H. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea. Insect Biochem. Mol. Biol. 2015, 65, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Togawa, T.; Dunn, W.A.; Emmons, A.C.; Willis, J.H. CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol. Biol. 2007, 37, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Middlebrooks, B.W.; Alexander, S.; Wasserman, S.A. Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Natl. Acad. Sci. USA 2006, 103, 16794–16799. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, N.T.; Tetreau, G.; Cao, X.; Jiang, H.; Wang, P.; Kanost, M.R. Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2015, 62, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, W.; Zhang, Y.; Zhang, X.; Zhao, P.; Xia, Q. Identification and Characterization of Novel Chitin-Binding Proteins from the Larval Cuticle of Silkworm, Bombyx mori. J. Proteome Res. 2016, 15, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Gao, X.; Ri-xin, W.; Song-zhen, H.; Jie, C.; Xiao-ling, T.; Hai, H.; Chun-lin, L.; Ting-ting, G.; Ya-qun, X.; et al. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 2014, 196, 1103–1115. [Google Scholar] [CrossRef]
- Arakane, Y.; Lomakin, J.; Gehrke, S.H.; Hiromasa, Y.; Tomich, J.M.; Muthukrishnan, S.; Beeman, R.W.; Kramer, K.J.; Kanost, M.R. Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins. PLoS Genet. 2012, 8, 612–622. [Google Scholar] [CrossRef]
- Hou, Q.-L.; Chen, E.-H.; Dou, W.; Wang, J.-J. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). Insect Sci. 2021, 28, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Su, Y.; Shao, T.; Fan, Z.; Cao, L.; Liu, W.; Zhang, J. Cuticle protein gene LmCP8 is involved in the structural development of the ovipositor in the migratory locust Locusta migratoria. Insect Mol. Biol. 2022, 31, 747–759. [Google Scholar] [CrossRef]
- Okamoto, S.; Futahashi, R.; Kojima, T.; Mita, K.; Fujiwara, H. Catalogue of epidermal genes: Genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genom. 2008, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Sapin, G.D.; Tomoda, K.; Tanaka, S.; Shinoda, T.; Miura, K.; Minakuchi, C. Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum. Insect Biochem. Mol. Biol. 2020, 126, 103450. [Google Scholar] [CrossRef] [PubMed]
- Bouhin, H.; Braquart, C.; Charles, J.P.; Quennedey, B.; Delachambre, J. Nucleotide sequence of an adult-specific cuticular protein gene from the beetle Tenebrio molitor: Effects of 20-hydroxyecdysone on mRNA accumulation. Insect Mol. Biol. 1993, 2, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, A.; Mathelin, J.; Braquart-Varnier, C.; Everaerts, C.; Delachambre, J. A functional analysis of ACP-20, an adult-specific cuticular protein gene from the beetle Tenebrio: Role of an intronic sequence in transcriptional activation during the late metamorphic period. Insect Mol. Biol. 2004, 13, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Dhadialla, T.S.; Carlson, G.R.; Le, D.P. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 1998, 43, 545–569. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, G.; Pineda, S.; Carton, B.; Del Estal, P.; Budia, F.; Viñuela, E. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag. Sci. 2003, 59, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.I.; Smagghe, G.; Pineda, S.; Viñuela, E. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol. Control 2004, 31, 189–198. [Google Scholar] [CrossRef]
- Pineda, S.; Schneider, M.-I.; Smagghe, G.; Martinez, A.-M.; Del Estal, P.; Vinuela, E.; Valle, J.; Budia, F. Lethal and sublethal effects of methoxyfenozide and spinosad on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 2007, 100, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Smagghe, G.; Pineda, S.; Vinuela, E. The ecological impact of four IGR insecticides in adults of Hyposoter didymator (Hym., Ichneumonidae):: Pharmacokinetics approach. Ecotoxicology 2008, 17, 181–188. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Suolangjiba; Kou, J.; Yu, B. Antinociceptive and anti-inflammatory activities of Aquilaria sinensis (Lour.) Gilg. Leaves extract. J. Ethnopharmacol. 2008, 117, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, E.; Li, Y.; Wu, Q.; Tian, W.; Liu, K.; Niu, Y.; Wang, D.; Liu, J.-G.; Hu, Y. Iriflophenone Glycosides from Aquilaria sinensis. Chem. Nat. Compd. 2016, 52, 834–837. [Google Scholar] [CrossRef]
- Qiao, H.-L.; Lu, P.-F.; Chen, J.; Ma, W.-S.; Qin, R.-M.; Li, X.-M. Antennal and behavioural responses of Heortia vitessoides females to host plant volatiles of Aquilaria sinensis. Entomol. Exp. Et Appl. 2012, 143, 269–279. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Moussian, B.; Seifarth, C.; Mueller, U.; Berger, J.; Schwarz, H. Cuticle differentiation during Drosophila embryogenesis. Arthropod Struct. Dev. 2006, 35, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yuan, H.; Yang, D.; Rui, C.; Mu, W. The Mechanism by Which Dodecyl Dimethyl Benzyl Ammonium Chloride Increased the Toxicity of Chlorpyrifos to Spodoptera exigua. Front. Pharmacol. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- Balabanidou, V.; Grigoraki, L.; Vontas, J. Insect cuticle: A critical determinant of insecticide resistance. Curr. Opin. Insect Sci. 2018, 27, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, P.; Huang, Y.; Zhang, Y.; Qiu, L. Identification of insect cuticular protein genes LCP17 and SgAbd5 from Helicoverpa armigera and evaluation their roles in fenvalerate resistance. Pestic. Biochem. Physiol. 2024, 199, 105775. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhang, J.; Yang, Y.; Liu, W.; Zhang, J.; Zhao, X. Expression and function analysis of endocuticle structural glycoprotein gene LmAbd-2 in Locusta migratoria. Sci. Agric. Sin. 2019, 52, 651–660. [Google Scholar]
- Vannini, L.; Willis, J.H. Localization of RR-1 and RR-2 cuticular proteins within the cuticle of Anopheles gambiae. Arthropod Struct. Dev. 2017, 46, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, G.; Guo, H.; Li, H.; Tian, M.; Liu, Q.; Wang, Y.; Xu, B.; Guo, X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. Insect Mol. Biol. 2022, 31, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Karouzou, M.V.; Spyropoulos, Y.; Iconomidou, V.A.; Cornman, R.S.; Hamodrakas, S.J.; Willis, J.H. Drosophila cuticular proteins with the R&R Consensus:: Annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 2007, 37, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ouyang, L.; Wu, Q.; Peng, Q.; Zhang, B.; Qian, W.; Liu, B.; Wan, F. Cuticular proteins in codling moth (Cydia pomonella) respond to insecticide and temperature stress. Ecotoxicol. Environ. Saf. 2024, 270, 115852. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Wang, X.; Liu, B.; Zhao, H.; Liu, C.; Zhang, X.; Zhang, Y.; Gao, H.; Schal, C.; Zhang, F. A cuticular protein, BgCPLCP1, contributes to insecticide resistance by thickening the cockroach endocuticle. Int. J. Biol. Macromol. 2024, 254, 127642. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Jiao, Q.; Ye, C.; Wu, J.; Zheng, Y.; Sun, C.; Hao, P.; Yu, X. A Novel Cuticular Protein-like Cpr21L Is Essential for Nymph Survival and Male Fecundity in the Brown Planthopper. Int. J. Mol. Sci. 2023, 24, 2163. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, R.; Ogawa, N.; Fujiwara, H.; Kojima, T. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genet. 2017, 13, e1006548. [Google Scholar] [CrossRef]
- Xie, J.; Peng, G.; Wang, M.; Zhong, Q.; Song, X.; Bi, J.; Tang, J.; Feng, F.; Gao, H.; Li, B. RR-1 cuticular protein TcCPR69 is required for growth and metamorphosis in Tribolium castaneum. Insect Sci. 2022, 29, 1612–1628. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.-Y.; Li, G.-Y.; Wu, Y.; Zhou, Z.-S.; Zhou, M.; Li, C. Glucose Utilization in the Regulation of Chitin Synthesis in Brown Planthopper. J. Insect Sci. 2019, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zou, Z.; Xin, T.; Cai, S.; Wang, X.; Zhang, H.; Zhong, L.; Xia, B. Knockdown of hexokinase in Diaphorina citri Kuwayama (Hemiptera: Liviidae) by RNAi inhibits chitin synthesis and leads to abnormal phenotypes. Pest Manag. Sci. 2022, 78, 4303–4313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ma, L.; Liu, X.; Peng, Y.; Liang, G.; Xiao, H. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera. Pest Manag. Sci. 2021, 77, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Rehan, A.; Freed, S. Fitness Cost of Methoxyfenozide and the Effects of Its Sublethal Doses on Development, Reproduction, and Survival of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Neotrop. Entomol. 2015, 44, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zou, H.; Geng, N.; Ding, N.; Wang, Y.; Zhang, J.; Zou, C. Fenoxycarb and methoxyfenozide (RH-2485) affected development and chitin synthesis through disturbing glycometabolism in Lymantria dispar larvae. Pestic. Biochem. Physiol. 2020, 163, 64–75. [Google Scholar] [CrossRef]
- Soares, M.P.M.; Elias-Neto, M.; Simoes, Z.L.P.; Bitondi, M.M.G. A cuticle protein gene in the honeybee: Expression during development and in relation to the ecdysteroid titer. Insect Biochem. Mol. Biol. 2007, 37, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhang, Y.; Xu, B. Characterization of the response to ecdysteroid of a novel cuticle protein R&R gene in the honey bee, Apis cerana cerana. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2013, 166, 73–80. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Forward (5′-3′) | Reverse (5′-3′) | TM | Product Length (bp) |
---|---|---|---|---|
TRE | CGCCACTGCTGACTGCTATG | GCCTTCGGTCGTCGGTATC | 60.0/60.1 | 249 |
HK | CCAGACCTGCTTATCAATACC | GCCGAATAGAAGACCCATC | 54.2/54.3 | 207 |
GPI | CGGGCAGTGGAAAGGGTA | TCAGGACTTCGGCTAAATGG | 58.9/57.8 | 173 |
GFAT | CGAGTTGTCGGTTGAAGAATG | CGTTGCGGATGCGAGTTA | 58.0/58.2 | 102 |
GNA | TTGGAGGATGTCGTGGTTA | ATTCATAGCGTTAGAGTTGCC | 54.8/54.4 | 191 |
UAP | TTCCGAAGTCAACGAAACA | AGAAATCTCCTCCAAACCAAT | 54.4/54.8 | 169 |
CHSA | ATTGCCTTTGTATAATACCTGC | CCTATCGGACTCTGTCTTGTT | 54.1/53.5 | 232 |
CHSB | AAGCAACAGCATTCGTCGTG | CCGTAGCAATCCGAGTGAAA | 59.5/58.7 | 300 |
CHT | AAGGACGGAAAGACGGGATT | TATGGGATGGCGGAGTAGATG | 60.1/60.0 | 170 |
HvCP3L | CTCCGACCCAGCACAACAC | CCTCAGCCTTGATTCCATTC | 59.0/58.0 | 220 |
T7 + dsGFP | taatacgactcactatagggCAGTTCTTGT TGAATTAGATG | taatacgactcactatagggTTTGGTTTGT CTCCCATGATG | 71.5/75.5 | 400 |
T7 + dsHvCP3L | taatacgactcactatagggATACAACTATGAGACCGAGAATG | taatacgactcactatagggGCTGCTGTCCACCGAAT | 74.4/77.9 | 308 |
β-actin | GTGTTCCCCTCTATCGTGG | TGTCGTCCCAGTTGGTGAT | 57.32/55.11 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Sun, M.; Liu, N.; Yin, M.; Lin, T. Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore. Insects 2024, 15, 362. https://doi.org/10.3390/insects15050362
Wang H, Sun M, Liu N, Yin M, Lin T. Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore. Insects. 2024; 15(5):362. https://doi.org/10.3390/insects15050362
Chicago/Turabian StyleWang, Hanyang, Mingxu Sun, Na Liu, Mingliang Yin, and Tong Lin. 2024. "Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore" Insects 15, no. 5: 362. https://doi.org/10.3390/insects15050362
APA StyleWang, H., Sun, M., Liu, N., Yin, M., & Lin, T. (2024). Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore. Insects, 15(5), 362. https://doi.org/10.3390/insects15050362