Effect of Ephestia kuehniella Eggs on Development and Transcriptome of the Ladybird Beetle Propylea japonica
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparing of the Ladybird and Diets
2.2. Feeding Experiments of P. japonica on Different Diets
2.3. Transcriptome Analysis
3. Results
3.1. The Analysis of Life History Traits of P. japonica on Different Diet
3.2. The Analysis of Transcriptome Profiling between APH and FLO
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Clercq, P.; Mason, P.G.; Babendreier, D. Benefits and risks of exotic biological control agents. BioControl 2011, 56, 681–698. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Riddick, E.W. Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: A mini-review. BioControl 2008, 54, 325–339. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Hao, Y.-N.; Riddick, E.W.; Liu, T.-X. Factitious prey and artificial diets for predatory lady beetles: Current situation, obstacles, and approaches for improvement: A review. Biocontrol Sci. Technol. 2017, 27, 601–619. [Google Scholar] [CrossRef]
- Specty, O.; Febvay, G.; Grenier, S.; Delobel, B.; Piotte, C.; Pageaux, J.F.; Ferran, A.; Guillaud, J. Nutritional plasticity of the predatory ladybeetle Harmonia axyridis (Coleoptera: Coccinellidae): Comparison between natural and substitution prey. Arch. Insect Biochem. 2003, 52, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Mercer, N.H.; Obrycki, J. Impacts of larval diet on pre-imaginal development, survival and adult size of six species of Coccinellidae (Coleoptera). J. Kans. Entomol. Soc. 2021, 93, 256–261. [Google Scholar] [CrossRef]
- De Clercq, P.; Bonte, M.; Van Speybroeck, K.; Bolckmans, K.; Deforce, K. Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag. Sci. 2005, 61, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, K.; Matsui, M. Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), reared on an alternative diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Appl. Entomol. Zool. 2006, 41, 233–237. [Google Scholar] [CrossRef]
- dos Santos Rodrigues, A.R.; Spíndola, A.F.; de Morais Oliveira, J.E.; Torres, J.B. Dietary effects upon biological performance and lambda-cyhalothrin susceptibility in the multicolored Asian lady beetle, Harmonia axyridis. J. Phytoparasitica 2013, 41, 285–294. [Google Scholar] [CrossRef]
- Maes, S.; Grégoire, J.-C.; De Clercq, P. Prey range of the predatory ladybird Cryptolaemus montrouzieri. BioControl 2014, 59, 729–738. [Google Scholar] [CrossRef]
- St-Onge, M.; Cormier, D.; Todorova, S.; Lucas, E. Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae. J. Appl. Entomol. 2016, 140, 218–222. [Google Scholar] [CrossRef]
- Du, X.Y.; Yang, H.Y.; Gong, S.R.; Zhang, P.F.; Chen, P.T.; Liang, Y.S.; Huang, Y.H.; Tang, X.F.; Chen, Q.K.; De Clercq, P.; et al. Aphidophagous ladybird beetles adapt to an aphid symbiont. Funct. Ecol. 2022, 36, 2593–2604. [Google Scholar] [CrossRef]
- Pervez, A. Ecology of aphidophagous ladybird Propylea species: A review. J. Asia-Pac. Entomol. 2011, 14, 357–365. [Google Scholar] [CrossRef]
- Li, H.-S.; Huang, Y.-H.; Chen, M.-L.; Ren, Z.; Qiu, B.-Y.; De Clercq, P.; Heckel, G.; Pang, H. Genomic insight into diet adaptation in the biological control agent Cryptolaemus montrouzieri. BMC Genom. 2021, 22, 135. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Luo, J.; Du, P.; Wu, L.; Li, Y.; Zhu, X.; Wang, L.; Zhang, S.; Cui, J. Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures. Mol. Ecol. Resour. 2019, 20, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Landmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Kovaka, S.; Zimin, A.V.; Pertea, G.M.; Razaghi, R.; Salzberg, S.L.; Pertea, M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019, 20, 278. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernandez-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, M.J.M.F.; Waterhouse, R.M. Summary Visualizations of Gene Ontology Terms with GO-Figure! Front. Bioinform. 2021, 1, 638255. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Du, X.-Y.; Chen, P.-T.; Tang, X.-F.; Gong, S.-R.; Zhang, P.-F.; Yang, H.-Y.; De Clercq, P.; Li, H.-S.; Pang, H. Is pollinivory in the omnivorous ladybird beetle Micraspis discolor (Coleoptera: Coccinellidae) symbiosis-dependent? Biol. Control 2022, 169, 104867. [Google Scholar] [CrossRef]
- Alaux, C.; Dantec, C.; Parrinello, H.; Le Conte, Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 2011, 12, 496. [Google Scholar] [CrossRef] [PubMed]
- Piper, M.D. Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Curr. Opin. Insect Sci. 2017, 23, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hatt, S.; He, K.; Chen, J.; Francis, F.; Wang, Z. Nine facultative endosymbionts in aphids. A review. J. Asia-Pac. Entomol. 2017, 20, 794–801. [Google Scholar] [CrossRef]
- Haine, E.R. Symbiont-mediated protection. Proc. R. Soc. B Biol. Sci. 2007, 275, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Brownlie, J.C.; Johnson, K.N. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009, 17, 348–354. [Google Scholar] [CrossRef]
- Dennis, A.B.; Patel, V.; Oliver, K.M.; Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 2017, 71, 2599–2617. [Google Scholar] [CrossRef]
Treatment | Batch | DIET MATERIAL | Process for Diet | Individual | Date |
---|---|---|---|---|---|
APH | APH01 | Pea aphids Megoura crassicauda | Live prey | 65 | October 2021 |
APH | APH02 | Pea aphids Megoura crassicauda | Live prey | 42 | Novermber 2018 |
APH | APH03 | Pea aphids Megoura crassicauda | Live prey | 40 | September 2022 |
FLO | FLO01 | Eggs of flour moth Ephestia kuehniella | Cold-stored | 40 | August 2021 |
FLO | FLO02 | Eggs of flour moth Ephestia kuehniella | Cold-stored | 97 | October 2021 |
FLO | FLO03 | Eggs of flour moth Ephestia kuehniella | Cold-stored | 56 | May 2021 |
PUP | PUP01 | Pupae of honeybee Apis mellifera | Dry powder and solid medium | 22 | March 2017 |
PUP | PUP02 | Pupae of honeybee Apis mellifera | Dry powder and solid medium | 50 | March 2017 |
HON | HON01 | Bee honey | Solid medium | 62 | Novermber 2018 |
HON | HON02 | Bee honey | Solid medium | 22 | March 2017 |
WHI | WHI01 | Whitefies Bemisia tabaci | Live prey | 50 | Novermber 2018 |
POL | POL01 | Pollen of Brassica campestris | Plant materials | 99 | Novermber 2023 |
BRI | BRI01 | Cysts of brine shrimp Artemia salina | Solid medium | 69 | Novermber 2018 |
BRI | BRI02 | Cysts of brine shrimp Artemia salina | Solid medium | 47 | March 2017 |
FAL | FAL01 | Eggs of fall armyworm Spodoptera frugiperda | Cold-stored | 28 | December 2023 |
YEL | YEL01 | Larvae of yellow mealworm Tenebrio molitor | Dry powder and solid medium | 88 | Novermber 2018 |
YEL | YEL02 | Larvae of yellow mealworm Tenebrio molitor | Dry powder and solid medium | 23 | March 2017 |
YEL | YEL03 | Larvae of yellow mealworm Tenebrio molitor | Dry powder and solid medium | 29 | March 2017 |
BLA | BLA01 | Larvae of black soldier fly Hermetia illucens | Dry powder and solid medium | 28 | March 2017 |
BLA | BLA02 | Larvae of black soldier fly Hermetia illucens | Dry powder and solid medium | 30 | May 2021 |
SIL | SIL01 | Pupae of silkworm Bombyx mori | Dry powder and solid medium | 74 | March 2017 |
POR | POR01 | Pork | Dry powder and solid medium | 20 | March 2017 |
LIV | LIV01 | Pork liver | Dry powder and solid medium | 18 | March 2017 |
CHI | CHI01 | Chicken egg | Solid medium | 25 | March 2017 |
APH | FLO | Wilcoxon Signed-Rank Test | |
---|---|---|---|
Survival rate (%) | 63.792 ± 3.541 | 84.277 ± 2.926 | Not significant |
Development time (day) | 12.017 ± 0.226 | 11.583 ± 0.305 | Not significant |
Female adult weight (mg) | 6.693 ± 0.621 | 6.243 ± 0.289 | Not significant |
Male adult weight (mg) | 5.484 ± 0.308 | 5.247 ± 0.307 | Not significant |
APH | APH | APH | FLO | FLO | |
---|---|---|---|---|---|
APH | |||||
APH | 0.890 | ||||
APH | 0.910 | 0.922 | |||
FLO | 0.862 | 0.942 | 0.908 | ||
FLO | 0.820 | 0.821 | 0.874 | 0.889 |
Regulation | ID | Descrption | Q Value | Ratio |
---|---|---|---|---|
up | ko00500 | Metabolism: Starch and sucrose metabolism | 7.30 × 10−15 | 16/59 |
up | ko01100 | Metabolism: Metabolic pathways | 2.44 × 10−9 | 69/2498 |
up | ko00052 | Metabolism: Galactose metabolism | 9.28 × 10−7 | 11/83 |
up | ko01200 | Metabolism: Carbon metabolism | 1.47 × 10−4 | 14/231 |
up | ko00010 | Metabolism: Glycolysis/Gluconeogenesis | 5.78 × 10−4 | 9/107 |
up | ko00830 | Metabolism: Retinol metabolism | 0.0069 | 9/153 |
up | ko00310 | Metabolism: Lysine degradation | 0.0069 | 8/121 |
up | ko00980 | Metabolism: Metabolism of xenobiotics by cytochrome P450 | 0.0095 | 9/163 |
up | ko00053 | Metabolism: Steroid hormone biosynthesis | 0.0134 | 8/143 |
up | ko00650 | Metabolism: Ascorbate and aldarate metabolism | 0.0148 | 4/32 |
up | ko00982 | Metabolism: Butanoate metabolism | 0.0162 | 8/151 |
up | ko00040 | Metabolism: Drug metabolism—cytochrome P450 | 0.0167 | 8/155 |
up | ko00071 | Metabolism: Pentose and glucuronate interconversions | 0.0167 | 6/88 |
up | ko00520 | Metabolism: Fatty acid degradation | 0.0350 | 6/103 |
up | ko00030 | Metabolism: Amino sugar and nucleotide sugar metabolism | 0.0377 | 4/45 |
up | ko00983 | Metabolism: Pentose phosphate pathway | 0.0440 | 9/228 |
up | ko00860 | Metabolism: Drug metabolism—other enzymes | 0.0447 | 7/149 |
down | ko00061 | Metabolism: Porphyrin and chlorophyll metabolism | 0.0020 | 5/87 |
down | ko04910 | Metabolism: Fatty acid biosynthesis | 0.0115 | 6/247 |
down | ko01100 | Organismal Systems: Insulin signaling pathway | 0.0115 | 20/2498 |
down | ko01212 | Metabolism: Metabolic pathways | 0.0115 | 5/176 |
down | ko04614 | Metabolism: Fatty acid metabolism | 0.0115 | 3/43 |
down | ko04152 | Organismal Systems: Renin-angiotensin system | 0.0137 | 5/191 |
down | ko04640 | Environmental Information Processing: AMPK signaling pathway | 0.0284 | 2/18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Chen, P.-T.; Chen, M.-L.; Chen, T.-Y.; Huang, Y.-H.; Lü, X.; Li, H.-S.; Pang, H. Effect of Ephestia kuehniella Eggs on Development and Transcriptome of the Ladybird Beetle Propylea japonica. Insects 2024, 15, 407. https://doi.org/10.3390/insects15060407
Li G, Chen P-T, Chen M-L, Chen T-Y, Huang Y-H, Lü X, Li H-S, Pang H. Effect of Ephestia kuehniella Eggs on Development and Transcriptome of the Ladybird Beetle Propylea japonica. Insects. 2024; 15(6):407. https://doi.org/10.3390/insects15060407
Chicago/Turabian StyleLi, Guannan, Pei-Tao Chen, Mei-Lan Chen, Tuo-Yan Chen, Yu-Hao Huang, Xin Lü, Hao-Sen Li, and Hong Pang. 2024. "Effect of Ephestia kuehniella Eggs on Development and Transcriptome of the Ladybird Beetle Propylea japonica" Insects 15, no. 6: 407. https://doi.org/10.3390/insects15060407
APA StyleLi, G., Chen, P. -T., Chen, M. -L., Chen, T. -Y., Huang, Y. -H., Lü, X., Li, H. -S., & Pang, H. (2024). Effect of Ephestia kuehniella Eggs on Development and Transcriptome of the Ladybird Beetle Propylea japonica. Insects, 15(6), 407. https://doi.org/10.3390/insects15060407