How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phenological Data Collection
2.2. Phenological Data Quantification and Standardization
2.3. Meteorological Data Collection and Analysis
2.4. Statistics Analysis
3. Results
3.1. Phenological Records of G. molesta in China
3.2. Temperature Changes in G. molesta-Infested Areas in China over Time
3.3. Temporal Trend of Overwintering Adults Phenology in Different Chinese Regions
3.4. Temporal Trend of Contemporary Adults Phenology in Different Chinese Regions
3.5. Phenological Response of G. molesta to Seasonal Average Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayres, M.P.; Lombardero, M.A.J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B.; Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Casteel, C.L.; Nabity, P.D.; O’Neill, B.F. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc. Natl. Acad. Sci. USA 2008, 105, 1781–1782. [Google Scholar] [CrossRef]
- Mao, J.; Meng, F.; Song, Y.; Li, D.; Ji, Q.; Hong, Y.; Lin, J.; Cai, P. Forecasting the expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China using the MaxEnt model. Insects 2024, 15, 417. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Kozlov, M.V.; Callaghan, T.V. Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim. Chang. 2008, 87, 91–106. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Hoegh Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef]
- Musolin, D.L.; Tougou, D.; Fujisaki, K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Chang. Biol. 2010, 16, 73–87. [Google Scholar] [CrossRef]
- Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Battisti, A.; Stastny, M.; Buffo, E.; Larsson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Chang. Biol. 2006, 12, 662–671. [Google Scholar] [CrossRef]
- Jones, P.D.; New, M.; Parker, D.E.; Martin, S.; Rigor, I.G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 1999, 37, 173–199. [Google Scholar] [CrossRef]
- Vasseur, D.A.; DeLong, J.P.; Gilbert, B.; Greig, H.S.; Harley, C.D.; McCann, K.S.; Savage, V.; Tunney, T.D.; O’Connor, M.I. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132612. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef]
- Bale, J. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2002, 357, 849–862. [Google Scholar] [CrossRef]
- Valérie, M.D.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate change 2021: The physical science basis. Contrib. Work. Group I Sixth Assess. Rep. Intergov. Panel Clim. Chang. 2021, 2, 2391. [Google Scholar]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
- Forrest, J.R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef]
- Pak, D.; Biddinger, D.; Bjørnstad, O.N. Local and regional climate variables driving spring phenology of tortricid pests: A 36 year study. Ecol. Entomol. 2019, 44, 367–379. [Google Scholar] [CrossRef]
- Ladányi, M.; Horváth, L. A review of the potential climate change impact on insect populations- general and agricultural aspects. Appl. Ecol. Environ. Res. 2010, 8, 143–152. [Google Scholar] [CrossRef]
- Estay, S.A.; Lima, M.; Labra, F.A. Predicting insect pest status under climate change scenarios: Combining experimental data and population dynamics modelling. J. Appl. Entomol. 2009, 133, 491–499. [Google Scholar] [CrossRef]
- Kirk, H.; Dorn, S.; Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 2013, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Claudia, N.H.; Silvia, D. Relationship between behavior and physiology in an invasive pest species: Oviposition site selection and temperature-dependent development of the oriental fruit moth (Lepidoptera: Tortricidae). Environ. Entomol. 2010, 39, 561–569. [Google Scholar]
- Sarai, D.S. The seasonal history of the oriental fruit moth in southern Missouri. J. Econ. Entomol. 1970, 63, 301–302. [Google Scholar] [CrossRef]
- Ellis, N.H.; Hull, L.A. Factors influencing adult male Grapholita molesta dispersal in commercial Malus and Prunus host crops. Entomol. Exp. Et Appl. 2013, 146, 232–241. [Google Scholar] [CrossRef]
- Neven, L.G.; Kumar, S.; Yee, W.L.; Wakie, T. Current and future potential risk of establishment of Grapholita molesta (Lepidoptera: Tortricidae) in Washington State. Environ. Entomol. 2018, 47, 448–456. [Google Scholar] [CrossRef]
- Liu, C.M.; Phukhahad, S.; Auamcharoen, W.; Matsuyama, S.; Kainoh, Y. Oviposition preferences of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to pear HIPVs. Arthropod-Plant Interact. 2022, 16, 517–523. [Google Scholar] [CrossRef]
- Myers, C.T.; Hull, L.A.; Krawczyk, G. Effects of orchard host plants (apple and peach) on development of oriental fruit moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 2014, 100, 421–430. [Google Scholar] [CrossRef]
- He, H.X. Occurrence regularities of and integrated control techniques for Grapholitha molesta. Anhui For. Sci. Technol. 2023, 49, 33–35. [Google Scholar]
- Zhou, D.S.; Gong, W.M.; Li, J.P.; Zhao, Z.W. Influence of meteorological conditions on Grapholita molesta overwintering larvae coming out and the law of Grapholita molest in central Liaoning area. North. Hortic. 2016, 6, 109–112. [Google Scholar]
- Yang, X.L.; Sun, S.J.; Gao, X.H.; Zhao, P.; Ding, W.Y.; Liu, X.X. Effects of integrated management and pesticide-reduction technology on the prevention and control of major pests in a Beijing pear orchard. Chin. J. Appl. Entomol. 2023, 60, 1876–1885. [Google Scholar]
- Cao, H.Y.; Yang, L.; Pan, Y.F.; Wang, Y.Q.; Feng, H.Z.; Lu, Y.H. Adult population dynamic of the oriental fruit moth Grapholita molesta andthe control efficacy of sex pheromone disorientation against it in a plumcotorchard in southern Xinjiang. J. Plant Prot. 2024, 51, 170–177. [Google Scholar]
- Liu, B.S.; Hu, R.R.; Bai, P.H.; Gu, X.S.; Li, G.Y.; Wang, D.J.; Wu, H.Y.; Shi, Q.J.; Ma, E.F.; Liu, F.M. Study on dynamic monitoring and characteristics of Grapholitha molesta in Tianjin area. China Fruits 2023, 07, 73–77. [Google Scholar]
- Jha, P.K.; Zhang, N.; Rijal, J.P.; Parker, L.E.; Ostoja, S.; Pathak, T.B. Climate change impacts on insect pests for high value specialty crops in California. Sci. Total Environ. 2024, 906, 13. [Google Scholar] [CrossRef]
- Arioli, C.J.; Carvalho, G.A.; Botton, M. Flutuação populacional de Grapholita molesta (Busck) com armadilhas de feromônio sexual na cultura do pessegueiro em Bento Gonçalves, RS, Brasil. Ciência Rural 2005, 35, 1–5. [Google Scholar] [CrossRef]
- Jeong, S.A.; Jung, C.; Sah, L.P.; Kim, Y.I. Occurrence patterns of three major fruit moths, Grapholita molesta, Grapholita dimorpha and Carposina sasakii, monitored by sex pheromone in plum orchards. Korean J. Appl. Entomol. 2012, 51, 449–459. [Google Scholar] [CrossRef]
- Yokoyama, V.Y.; Miller, G.T.J. High temperature for control of oriental fruit moth (Lepidoptera: Tortricidae) in stone fruits. J. Econ. Entomol. 1987, 3, 641–645. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Xu, L.X.; Li, L.L.; Wu, H.B.; Xu, Y.Y. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2019, 109, 212–220. [Google Scholar] [CrossRef]
- Li, W.L.; Li, D.X.; Dong, J.F.; Feng, Y.Q.; Li, Y. The research of threshold temperature and effective accumulated temperature of oriental fruit moth, Grapholitha molesta Busck. J. Henan Agric. Sci. 2010, 10, 80–82. [Google Scholar]
- Du, J.; Guo, J.T.; Zhang, Y.S.; Wu, J.X. Effect of Temperature on Development and reproduction of Grapholitha molesta (Busck) (Lepidoptera: Tortricidae). Acta Agric. Boreali-Occident. Sin. 2009, 18, 314–318. [Google Scholar]
- Cai, P.M.; Song, Y.Z.; Meng, L.T.; Lin, J.; Zhao, M.T.; Wu, Q.F.; Nie, C.P.; Li, Y.Y.; Ji, Q.E. Phenological responses of Bactrocera dorsalis (Hendel) to climate warming in China based on long-term historical data. Int. J. Trop. Insect Sci. 2023, 43, 881–894. [Google Scholar] [CrossRef]
- Cai, P.M.; Song, Y.Z.; Meng, L.T.; Liu, R.J.; Lin, J.; Zhao, M.T.; Nie, C.P.; Li, Y.Y.; Ji, Q.G. Climate warming affects phenology of Bactrocera dorsalis: A case study of Fujian and Guangxi, China. Bull. Insectology 2023, 76, 73–81. [Google Scholar]
- Liu, Y.G.; Gu, S.S.; Li, L.L.; Zhang, B.; Yu, Y.; Zheng, C.Y. The frequency of occurrence of Grapholitha molesta (Busck) in singlepear, peach and mixed pear-peach orchards in Laiyang. Chin. J. Appl. Entomol. 2013, 50, 1538–1545. [Google Scholar]
- Tang, G.L.; Ding, Y.H.; Wang, S.W.; Ren, G.Y.; Liu, H.B.; Zhang, L. Comparative analysis of China surface air temperature series for the past 100 years. Adv. Clim. Chang. Res. 2010, 1, 11–19. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. J. Agric. Sci. 2013, 151, 163–188. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Hülber, K.; Zimmermann, N.E.; Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 2019, 28, 533–543. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Nufio, C.R.; Buckley, L.B. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019, 10, e02866. [Google Scholar] [CrossRef]
- Harrington, R.; Fleming, R.A.; Woiwod, I.P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 2001, 3, 233. [Google Scholar] [CrossRef]
- Schwartzberg, E.G.; Jamieson, M.A.; Raffa, K.F.; Reich, P.B.; Montgomery, R.A.; Lindroth, R.L. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia 2014, 175, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Gordo, O.; Sanz, J.J. Phenology and climate change: A long-term study in a Mediterranean locality. Oecologia 2005, 146, 484–495. [Google Scholar] [CrossRef]
- Kingsolver, J.; Huey, R. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 2008, 10, 251–268. [Google Scholar]
- Miller, G.A.; Clissold, F.J.; Mayntz, D.; Simpson, S.J. Speed over efficiency: Locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proc. R. Soc. B Biol. Sci. 2009, 276, 3581–3589. [Google Scholar] [CrossRef]
- Tang, R.X.; Tan, Q.Y.; Zhang, J.; Liu, X.X.; Zhang, Q.W.; Li, Z. Impact analysis of ambient temperature on occurrence dynamics of Grapholita molesta (Busck) in pear orchard. North. Hortic. 2020, 11, 25–31. [Google Scholar]
- Jung, M.P.; Kim, K.H.; Lee, S.G.; Park, H.H. Effect of climate change on the occurrence of overwintered moths of orchards in South Korea. Entomol. Res. 2013, 43, 177–182. [Google Scholar] [CrossRef]
- Chaudhry, G.U. The development and fecundity of the oriental fruit moth, Grapholitha (Cydia) molesta (Busck) under controlled temperatures and humidities. Bull. Entomol. Res. 1956, 46, 869. [Google Scholar] [CrossRef]
- Gomi, T. Effects of timing of diapause induction on winter survival and reproductive success in Hyphantria cunea in a transition area of voltinism. Entomol. Sci. 2000, 3, 433–438. [Google Scholar]
- Irwin, J.T.; Lee, R.E., Jr. Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 2003, 100, 71–78. [Google Scholar] [CrossRef]
- Danks, H.V. The range of insect dormancy responses. Eur. J. Entomol. 2002, 99, 127–142. [Google Scholar] [CrossRef]
- Sarker, S.; Woo, Y.H.; Lim, U.T. Developmental stages of peach, plum, and apple fruit influence development and fecundity of Grapholita molesta (Lepidoptera: Tortricidae). Sci. Rep. 2021, 11, 2105. [Google Scholar] [CrossRef]
- Wu, Y.X.; Li, J.J.; Liu, H.H.; Qiao, G.X.; Huang, X.L. Investigating the impact of climate warming on phenology of aphid pests in China using long-term historical data. Insects 2020, 11, 13. [Google Scholar] [CrossRef]
- Chen, M.Y.; Liu, J.Z.; Zhao, J.J.; Liu, Y.F. Differences in rapid thermotolerance among geographical populations of Carposina sasakii (Lepidoptera: Carposinidae) and Grapholita molesta (Lepidoptera: Tortricidae). Acta Entomol. Sin. 2024, 67, 235–245. [Google Scholar]
- Parmesan, C. Climate and species’ range. Nature 1996, 382, 765–766. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Warren, M.; Hill, J.; Thomas, J.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.; Telfer, M.; Jeffcoate, S.; Harding, P. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414, 65–69. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.; Fox, R.; Telfer, M.; Willis, S.; Asher, J.; Huntley, B. Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 2163–2171. [Google Scholar] [CrossRef]
- Konvicka, M.; Maradova, M.; Benes, J.; Fric, Z.; Kepka, P. Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Glob. Ecol. Biogeogr. 2003, 12, 403–410. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Chen, M.H.; Dorn, S. Reliable and efficient discrimination of four internal fruit-feeding Cydia and Grapholita species (Lepidoptera: Tortricidae) by polymerase chain reaction-restriction fragment length polymorphism. J. Econ. Entomol. 2009, 102, 2209–2216. [Google Scholar] [CrossRef]
- Liang, L.N.; Zhang, W.; Ma, G.; Hoffmann, A.A.; Ma, C.S. A single hot event stimulates adult performance but reduces egg survival in the oriental fruit moth, Grapholitha molesta. PLoS ONE 2014, 9, e116339. [Google Scholar] [CrossRef]
- Chen, H.; Xu, X.L.; Li, Y.P.; Wu, J.X. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Sci. 2014, 21, 439–448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, H.; Li, W.; Yu, S.; Mao, J.; Hong, Y.; Song, Y.; Cai, P. How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data. Insects 2024, 15, 474. https://doi.org/10.3390/insects15070474
Bian H, Li W, Yu S, Mao J, Hong Y, Song Y, Cai P. How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data. Insects. 2024; 15(7):474. https://doi.org/10.3390/insects15070474
Chicago/Turabian StyleBian, Haotian, Wenzhuo Li, Shengjun Yu, Jianxiang Mao, Yongcong Hong, Yunzhe Song, and Pumo Cai. 2024. "How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data" Insects 15, no. 7: 474. https://doi.org/10.3390/insects15070474
APA StyleBian, H., Li, W., Yu, S., Mao, J., Hong, Y., Song, Y., & Cai, P. (2024). How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data. Insects, 15(7), 474. https://doi.org/10.3390/insects15070474