The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Traps and Collection
2.3. Mosquito Identification
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Handbook for Integrated Vector Management; WHO: Paris, France, 2012.
- Reinert, W.C. The New Jersey light trap: An old standard for most mosquito control programs. In Proceedings of the Seventy-Sixth Annual Meeting of the New Jersey Mosquito Control Association, Atlantic, NJ, USA; 1989; pp. 17–25. Available online: https://vectorbio.rutgers.edu/outreach/njtrap.htm (accessed on 8 May 2024).
- Sudia, W.D.; Chamberlain, R.W. Battery-operated light trap, an improved model. Mosq. News 1962, 22, 126–129. [Google Scholar]
- Newhouse, V.F.; Chamberlain, R.W.; Johnston, J.G.; Sudia, W.D. Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosq. News 1966, 26, 30–35. [Google Scholar]
- Kline, D.L. Comparison of two American biophysics mosquito traps: The professional and a new counterflow geometry trap. J. Am. Mosq. Control Assoc. 1999, 15, 276–282. [Google Scholar] [PubMed]
- Burkett, D.A.; Butler, J.F.; Kline, D.L. Field evaluation of colored light-emitting diodes as attractants for woodland mosquitoes and other Diptera in north central Florida. J. Am. Mosq. Control Assoc. 1998, 14, 186–195. [Google Scholar] [PubMed]
- Maciel-de-Freitas, R.; Eiras, A.E.; Lourenço-de-Oliveira, R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 2006, 101, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Farajollahi, A.; Kesavaraju, B.; Price, D.C.; Williams, G.M.; Healy, S.P.; Gaugler, R.; Nelder, M.P. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 2009, 46, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Shin, E.; Ju, Y. Development of auto remote-counting system for mosquito surveillance. Public Health Wkly. Rep. 2015, 8, 902–905. [Google Scholar]
- Geier, M.; Weber, M.; Rose, A.; Obermayr, U.; Abadam, C.; Kiser, J.; Pruszynski, C.; Doyle, M. A smart Internet of Things (IoT) device for monitoring mosquito trap counts in the field while drinking coffee at your desk. In Proceedings of the American Mosquito Control Association 82nd Annual Meeting 2016, Savannah, GA, USA, 7–11 February 2016; p. 32. [Google Scholar]
- Lee, D.-K. Ecological characteristics and current status of infectious disease vectors in South Korea. J. Korean Med. Assoc. 2017, 60, 458–467. [Google Scholar] [CrossRef]
- Jung, C.-W.; Yang, T.-U.; Jeong-Ik, H. Epidemiology of Japanese encephalitis in Korea, 2011-2015. Public Health Wkly. Rep. 2016, 9, 211–216. [Google Scholar]
- The Korea Disease Control and Prevention Agency Disease Portal. Available online: https://dportal.kdca.go.kr/pot/is/summary.do (accessed on 8 May 2024).
- Ree, H.-I. Unstable vivax malaria in Korea. Korean J. Parasitol. 2000, 38, 119–138. [Google Scholar] [CrossRef]
- World Health Organization. Synopsis of the world malaria situation, 1979. Wkly. Epidemiol. Rec. 1981, 56, 145–149. [Google Scholar]
- Chai, I.; Lim, G.; Yoon, S.N.; Oh, W.I.; Kim, S.J.; Chai, J.Y. Occurrence of tertian malaria in a male patient who has never been abroad. Korean J. Parasitol. 1994, 32, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.-G.; Lee, H.S.; Yang, S.-C.; Noh, B.-E.; Kim, T.-K.; Lee, W.-G.; Lee, H.I. National monitoring of mosquito populations and molecular analysis of flavivirus in the Republic of Korea in 2020. Microorganisms 2021, 9, 2085. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Cho, S.; Kim, H.; Lee, W.-G.; Lee, H.-I. Monitoring Japanese encephalitis vector mosquitoes (Culex tritaeniorhynchus) in the Republic of Korea, 2022. Public Health Wkly. Rep. 2023, 16, 801–814. [Google Scholar]
- Han, B.; Shin, H.-I.; Ju, J.-W.; Lee, H.-I. Malaria vector mosquitoes surveillance and Plasmodium vivax infections in the Republic of Korea, 2022. Public Health Wkly. Rep. 2023, 16, 521–537. [Google Scholar]
- Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate change and vector-borne diseases: A regional analysis. Bull. World Health Organ. 2000, 78, 1136–1147. [Google Scholar] [PubMed]
- Lee, S.H.; Nam, K.W.; Jeong, J.Y.; Yoo, S.J.; Koh, Y.-S.; Lee, S.; Heo, S.T.; Seong, S.-Y.; Lee, K.H. The effects of climate change and globalization on mosquito vectors: Evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. PLoS ONE 2013, 8, e68512. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, W.-G.; Lee, H.I.; Cho, S.-H. Test operation of Digital Mosquito Monitoring System for vector surveillance. Public Health Wkly. Rep. 2020, 13, 1302–1312. [Google Scholar]
- Burkett, D.A.; Lee, W.-J.; Lee, K.-W.; Kim, H.-C.; Lee, H.-I.; Lee, J.-S.; Shin, E.-H.; Wirtz, R.A.; Cho, H.-W.; Claborn, D.M.; et al. Late season commercial mosquito trap and host seeking activity evaluation against mosquitoes in a malarious area of the Republic of Korea. Korean J. Parasitol. 2002, 40, 45–54. [Google Scholar] [CrossRef]
- Kim, H.-C.; Kim, M.-S.; Choi, K.-S.; Hwang, D.-U.; Johnson, J.L.; Klein, T.A. Comparison of adult mosquito black-light and light-emitting diode traps at three cowsheds located in malaria-endemic areas of the Republic of Korea. J. Med. Entomol. 2017, 54, 221–228. [Google Scholar] [CrossRef]
- Li, Y.; Su, X.; Zhou, G.; Zhang, H.; Puthiyakunnon, S.; Shuai, S.; Cai, S.; Gu, J.; Zhou, X.; Yan, G.; et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasit. Vectors 2016, 9, 446. [Google Scholar] [CrossRef] [PubMed]
- Ponlawat, A.; Khongtak, P.; Jaichapor, B.; Pongsiri, A.; Evans, B.P. Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand. Parasit. Vectors 2017, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Drago, A.; Marini, F.; Caputo, B.; Coluzzi, M.; della Torre, A.; Pombi, M. Looking for the gold standard: Assessment of the effectiveness of four traps for monitoring mosquitoes in Italy. J. Vector Ecol. 2012, 37, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Lühken, R.; Pfitzner, W.P.; Börstler, J.; Garms, R.; Huber, K.; Schork, N.; Steinke, S.; Kiel, E.; Becker, N.; Tannich, E.; et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasit. Vectors 2014, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Hoel, D.F.; Kline, D.L.; Allan, S.A. Evaluation of six mosquito traps for collection of Aedes albopictus and associated mosquito species in a suburban setting in north central Florida. J. Am. Mosq. Control Assoc. 2009, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Smith, M.L.; Fulcher, A.; Kaufman, P.E.; Zhao, T.-Y.; Xue, R.-D. Field evaluation of three new mosquito light traps against two standard light traps to collect mosquitoes (Diptera: Culicidae) and non-target insects in northeast Florida. Fla. Entomol. 2015, 98, 114–117. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Vasquez, C.; Carvajal, A.; Moreno, M.; Petrie, W.D.; Beier, J.C. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit. Vectors 2022, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Kröckel, U.; Rose, A.; Eiras, A.E.; Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 2006, 22, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Degener, C.M.; Staunton, K.M.; Bossin, H.; Marie, J.; da Silva, R.D.; Lima, D.C.; Eiras, A.E.; Akaratovic, K.I.; Kiser, J.; Gordon, S.W. Evaluation of the new modular Biogents BG-Pro mosquito trap in comparison to CDC, EVS, BG-Sentinel, and BG-Mosquitaire traps. J. Am. Mosq. Control Assoc. 2021, 37, 224–241. [Google Scholar] [CrossRef]
- Lee, K.W.; Egan, P.J. Illustrated Taxonomic Keys to Genera and Species of Female Mosquitoes of Korea. Part 1; Department of the Army, 5th Preventive Medical Unit, 18th Medical Command: San Francisco, CA, USA, 1985. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Heip, C.H.R.; Herman, P.M.J.; Soetaert, K. Indices of diversity and evenness. Oceanis 1998, 24, 61–87. [Google Scholar]
- Browne, S.M.; Bennett, G.F. Response of mosquitoes (Diptera: Culicidae) to visual stimuli. J. Med. Entomol. 1981, 18, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Mboera, L.E.G.; Takken, W. Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Med. Vet. Entomol. 1997, 7, 355–368. [Google Scholar]
- De Ázara, T.M.F.; Degener, C.M.; Roque, R.A.; Ohly, J.J.; Geier, M.; Eiras, Á.E. The impact of CO2 on collection of Aedes aegypti (Linnaeus) and Culex quinquefasciatus Say by BG-Sentinel (r) traps in Manaus, Brazil. Mem. Inst. Oswaldo Cruz 2013, 108, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Owino, E.A.; Sang, R.; Sole, C.L.; Pirk, C.; Mbogo, C.; Torto, B. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasit. Vectors 2014, 7, 451. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Yi, H. Application of smart mosquito monitoring traps for the mosquito forecast systems by Seoul Metropolitan city. J. Ecol. Environ. 2020, 44, 13. [Google Scholar] [CrossRef]
- Veronesi, R.; Gentile, G.; Carrieri, M.; Maccagnani, B.; Stermieri, L.; Bellini, R. Seasonal pattern of daily activity of Aedes caspius, Aedes detritus, Culex modestus, and Culex pipiens in the Po Delta of northern Italy and significance for vector-borne disease risk assessment. J. Vector Ecol. 2012, 37, 49–61. [Google Scholar] [CrossRef]
Species | BLT | BGT | LED | DMS | Total | |
---|---|---|---|---|---|---|
Aedes albopictus | 6 (1.2) | 22 (10.8) | 1 (0.2) | 3 (0.6) | 32 (1.9) | |
Ae. alboscutellatus | 1 (0.2) | 1 (0.5) | 1 (0.2) | 0 | 3 (0.2) | |
Ae. vexans | 163 (31.9) | 36 (17.7) | 232 (50.4) | 16 (3.4) | 447 (27.1) | |
Anopheles spp. | 7 (1.4) | 5 (2.5) | 3 (0.7) | 1 (0.2) | 16 (1.0) | |
Armigeres subalbatus | 3 (0.6) | 8 (3.9) | 4 (0.9) | 1 (0.2) | 16 (1.0) | |
Coquillettidia ochracea | 0 | 0 | 1 (0.2) | 0 | 1 (0.1) | |
Culex bitaeniorhynchus | 1 (0.2) | 1 (0.5) | 1 (0.2) | 0 | 3 (0.2) | |
Cx. inatomii | 1 (0.2) | 3 (1.5) | 0 | 0 | 4 (0.2) | |
Cx. orientalis | 34 (6.7) | 7 (3.4) | 12 (2.6) | 25 (5.3) | 78 (4.7) | |
Cx. pipiens | 127 (24.9) | 42 (20.7) | 75 (16.3) | 410 (86.3) | 654 (39.7) | |
Cx. rubensis | 1 (0.2) | 0 | 0 | 0 | 1 (0.1) | |
Cx. tritaeniorhynchus | 1 (0.2) | 0 | 0 | 1 (0.2) | 2 (0.1) | |
Mansonia uniformis | 15 (2.9) | 3 (1.5) | 8 (1.7) | 6 (1.3) | 32 (1.9) | |
Ochlerotatus hatorii | 4 (0.8) | 0 | 1 (0.2) | 0 | 5 (0.3) | |
Oc. koreicus | 146 (28.6) | 75 (36.9) | 121 (26.3) | 12 (2.5) | 354 (21.5) | |
Oc. nipponicus | 1 (0.2) | 0 | 0 | 0 | 1 (0.1) | |
Total | Individuals | 511 | 203 | 460 | 475 | 1649 |
No. species | 15 | 11 | 12 | 9 | 16 |
χ2 (df = 3, N = 52) | p-Value | |
---|---|---|
Total number of female mosquitoes | 12.89 | 0.005 * |
Culex pipiens | 19.11 | <0.001 * |
Aedes vexans | 12.90 | 0.005 * |
Aedes albopictus | 14.51 | 0.002 * |
Trap Comparison | Total Numbers of Female Mosquitoes | Culex pipiens | Aedes vexans | Aedes albopictus | ||||
---|---|---|---|---|---|---|---|---|
Z-Adjusted Value | p-Value | Z-Adjusted Value | p-Value | Z-Adjusted Value | p-Value | Z–Adjusted Value | p-Value | |
BLT vs. BGT | −3.541 | <0.001 * | −1.962 | 0.050 | −2.020 | 0.044 | −2.018 | 0.064 |
BLT vs. LED | −0.564 | 0.579 | −1.030 | 0.311 | −0.514 | 0.614 | −1.531 | 0.311 |
BLT vs. DMS | −1.437 | 0.153 | −2.413 | 0.014 | −2.520 | 0.012 | −0.905 | 0.511 |
BGT vs. LED | −2.771 | 0.004 * | −1.216 | 0.243 | −2.351 | 0.019 | −3.205 | 0.004 * |
BGT vs. DMS | −1.489 | 0.139 | −3.932 | <0.001 * | −0.659 | 0.545 | −2.723 | 0.014 |
LED vs. DMS | −0.821 | 0.418 | −3.160 | 0.001 * | −2.957 | 0.002 * | −0.647 | 0.724 |
BLT | BGT | LED | DMS | |
---|---|---|---|---|
1-D (95% CI) | 0.751 (0.750–0.751) | 0.777 (0.775–0.780) | 0.650 (0.647–0.653) | 0.251 (0.245–0.256) |
E | 60.1 | 49.4 | 34.3 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S.; Noh, B.-E.; Kim, S.Y.; Kim, H.; Lee, H.I. The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea. Insects 2024, 15, 531. https://doi.org/10.3390/insects15070531
Lee HS, Noh B-E, Kim SY, Kim H, Lee HI. The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea. Insects. 2024; 15(7):531. https://doi.org/10.3390/insects15070531
Chicago/Turabian StyleLee, Hak Seon, Byung-Eon Noh, Seong Yoon Kim, Hyunwoo Kim, and Hee Il Lee. 2024. "The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea" Insects 15, no. 7: 531. https://doi.org/10.3390/insects15070531
APA StyleLee, H. S., Noh, B. -E., Kim, S. Y., Kim, H., & Lee, H. I. (2024). The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea. Insects, 15(7), 531. https://doi.org/10.3390/insects15070531