Advances in the Integrated Pest Management of Quinoa (Chenopodium quinoa Willd.): A Global Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Global Expansion of Quinoa
3. Quinoa Cropping Systems
3.1. Traditional System
3.2. Modern System
4. Major Pests of Quinoa
4.1. Piercing-Sucking Insects
4.2. Stem Borers
4.3. Defoliators
4.4. Grain Borers
4.5. Leaf Miner Flies
5. Integrated Pest Management in Quinoa
5.1. Monitoring
5.1.1. Plant Sampling
- Whole plant (at germination), to monitor initial damage of agromyzid adults.
- The stem, during the vegetative stage to detect the first generation of stem boring flies (e.g., A. karli).
- Leaves (during the vegetative stage), to monitor leafminer flies, aphids, and lepidopteran larvae.
- Flower primordia and leaves (at the beginning of flowering), to monitor lepidopteran larvae and leafminer flies.
- Whole panicle (from flowering to maturation), to monitor lepidopteran larvae, plant bugs, lygaeids, rhopalids, and thrips.
5.1.2. Use of Traps
- Color and molasses traps
- b.
- Pheromone traps
5.2. Economic Thresholds
5.3. Cultural Measures
5.3.1. Soil Preparation
5.3.2. Plant Density
5.3.3. Sowing Periods
5.3.4. Cultivation and Hilling
5.3.5. Weed Control
5.3.6. Crop Rotation and Intercropping
5.4. Use of Synthetic Chemical Insecticides
5.5. Use of Bioinsecticides
5.6. Biological Control
5.6.1. Natural Biological Control
- Predators
- b.
- Parasitoids
5.6.2. Applied Biological Control
6. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrero, A.L.; Gallucci, S.S.; Michalijos, P.; Visciarelli, S.M. Países Andinos: Aportes teóricos para un abordaje integrado desde las perspectivas geográfica y turística. Huellas 2011, 15, 121–138. [Google Scholar]
- Borsdorf, A.; Stadel, C. The Andes: A Geographical Portrait; Springer Geography: New York, NY, USA, 2015. [Google Scholar]
- Gamboa, C.; Van den Broeck, G.; Maertens, M. Smallholders’ preferences for improved quinoa varieties in the Peruvian Andes. Sustainability 2018, 10, 3735. [Google Scholar] [CrossRef]
- Cohen-Aponte. Introduction to Ancient Andean Art; Smarthistory: New York, NY, USA, 2019; Available online: https://smarthistory.org/introduction-to-ancient-andean-art/ (accessed on 5 January 2024).
- Mujica, A. Andean grains and legumes. In Neglected Crops: 1492 From a Different Perspective; FAO Plant Production and Protection Series; FAO: Rome, Italy, 1994; pp. 131–148. [Google Scholar]
- Bazile, D.; Bertero, H.; Nieto, C. Estado Del Arte de La Quinua En El Mundo En 2013; FAO: Santiago, Chile; CIRAD: Montpellier, France, 2014. [Google Scholar]
- Bedoya-Perales, N.; Pumi, G.; Mujica, A.; Talamini, E.; Domingos Padula, A. Quinoa expansion in Peru and its implications for land use management. Sustainability 2018, 10, 532. [Google Scholar] [CrossRef]
- Gómez, L.; Aguilar, E. Guía de Cultivo de la Quinua; Organización de las Naciones Unidas para la Alimentación y la Agricultura, Universidad Nacional Agraria La Molina: Lima, Peru, 2016. [Google Scholar]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kaniwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Abugoch, L.E. Chapter 1 Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar]
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, O.P. Integrated pest management for sustainable agriculture. In Integrated Pest Management in Indian Agriculture; Proceedings 11; National Centre for Agricultural Economics and Policy Research: New Delhi, India, 2004; pp. 11–24. [Google Scholar]
- Mohammad, N. An overview of the IPM techniques for saving the agricultural biodiversity in Malaysia. J. Appl. Sci. Agric. 2014, 9, 2666–2671. [Google Scholar]
- Reddy, P.P. Biointensive Integrated Pest Management in Horticultural Ecosystems; Springer Science & Business Media: New Delhi, India, 2014. [Google Scholar]
- Eiselen, E. Quinoa, A potentially important food crop of the Andes. J. Geogr. 1956, 55, 330–333. [Google Scholar] [CrossRef]
- Tapia, M. La Quinua y Kañiwa, Granos Andino; IICA-CIID: Bogotá, Colombia, 1979. [Google Scholar]
- Maughan, P.J.; Bonifacio, A.; Coleman, C.E.; Jellen, E.N.; Stevens, M.R.; Fairbanks, D.J. Quinoa (Chenopodium quinoa). In Pulses, Sugar and Tuber Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 147–158. [Google Scholar]
- Gandarillas, A.; Rojas, W.; Bonifacio, A.; Ojeda, N. La quinua en Bolivia: Perspectiva de la Fundación PROINPA. In Estado del Arte de la Quinua en el Mundo en 2013; FAO: Santiago, Chile; CIRAD: Montpellier, France, 2014; pp. 410–431. [Google Scholar]
- Gómez-Pando, L.; Mujica, A.; Chura, C.; Pérez, T.; Villantoy, P.; Gonzáles, V.; Ccoñas, W. Perú: Capitulo Numero 5.2. In Estado del Arte de la Quinua en el Mundo en 2013; FAO: Santiago, Chile; CIRAD: Montpellier, France, 2014; pp. 450–461. [Google Scholar]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- FAO; Bioversity International. Celebrando El Año Internacional de La Quinua: Un Futuro Sembrado Hace Miles de Años. 2012. Available online: http://www.fao.org/fileadmin/templates/aiq2013/res/es/nota_conceptual.pdf (accessed on 5 January 2024).
- Basantes-Morales, E.R.; Alconada, M.M.; Pantoja, J.L. Quinoa (Chenopodium quinoa Willd) production in the Andean region: Challenges and potentials. J. Exp. Agric. Int. 2019, 36, 1–18. [Google Scholar] [CrossRef]
- Bazile, D.; Baudron, F. Dinámica de expansión mundial del cultivo de la quinua respecto a su alta biodiversidad. In Estado del Arte de la Quinua en el Mundo en 2013; FAO: Santiago, Chile; CIRAD: Montpellier, France, 2014; pp. 49–64. [Google Scholar]
- Cruces, L.; Callohuari, Y.; Carrera, C. Quinua: Manejo Integrado de Plagas. In Estrategias en el Cultivo de Quinua para Fortalecer el Sistema Agroalimentario en la Zona Andina; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Santiago, Chile, 2016. [Google Scholar]
- FAO. FAOSTAT. In Data—Crops: Quinoa for Bolivia, Peru, Ecuador, Yield, Area Harvested, Production Quantity for 2000—2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 January 2024).
- Latorre, J. Is Quinoa Cultivation on the Coastal Desert of Peru Sustainable? A Case Study from Majes, Arequipa. Master’s Thesis, Aarhus University, Aarhus, Denmark, 2017. [Google Scholar]
- Valencia-Chamorro, S. Quinoa-Overview. In Encyclopedia of Food Grains; Academic Press: Oxford, UK, 2016; Volume 1, pp. 341–348. [Google Scholar]
- Wieme, R.; Packer, D.; Murphy, K.; Reganold, J. Growing Quinoa in Washington State; Washington State University Extension: Pullman, WA, USA, 2021; Available online: https://pubs.extension.wsu.edu/growing-quinoa-in-washington-state (accessed on 5 January 2024).
- Dughetti, A.C. Plagas de La Quinua y Sus Enemigos Naturales En El Valle Inferior Del Río Colorado, Buenos Aires, Argentina. 2015. Available online: https://inta.gob.ar/sites/default/files/script-tmp-inta-manual-plagas-de-la-quinua-y-sus-enemigos-natura.pdf (accessed on 5 January 2024).
- Dughetti, A.C.; Carpintero, D.; Navarro, F.; La Rossa, F.; Aquino, D.; Martínez, J.J.; Zárate, A. Artrópodos Presentes En La Quinua En El Valle Inferior Del Río Colorado, Buenos Aires, Argentina. In Ciencia y Tecnología de los Cultivos Industriales; Ediciones INTA: Buenos Aires, Argentina; Ministry of Economy: Buenos Aires, Argentina, 2013. [Google Scholar]
- Rasmussen, C.; Lagnaoui, A.; Esbjerg, P. Advances in the knowledge of quinoa pests. Food Rev. Int. 2003, 19, 61–75. [Google Scholar] [CrossRef]
- Saravia, R.; Plata, G.; Gandarillas, A. Plagas y Enfermedades Del Cultivo de Quinua; Fundación PROINPA: Cochabamba, Bolivia, 2014. [Google Scholar]
- Capinera, J. Handbook of Vegetable Pests, 2nd ed.; Academic Press: London, UK; San Diego, CA, USA, 2020. [Google Scholar]
- Cruces, L.; de la Peña, E.; De Clercq, P. Seasonal phenology of the major insect pests of quinoa (Chenopodium quinoa Willd.) and their natural enemies in a traditional zone and two new production zones of Peru. Agriculture 2020, 10, 644. [Google Scholar] [CrossRef]
- Dughetti, A.C. La Chinche Diminuta Nysius simulans: Plaga Emergente en Quinua y Otros Cultivos en el Valle Bonaerense Del Río Colorado. 2015. Available online: http://www.servicios.uns.edu.ar/institucion/files/1_AP_0_68.pdf (accessed on 5 January 2024).
- Hradil, K.; Kment, P.; Roháčová, M. New records of Liorhyssus hyalinus (Heteroptera: Rhopalidae) in the Czech Republic, with a review of Its worldwide distribution and biology. Acta Musei Morav. Sci. Biol. 2007, 92, 53–107. [Google Scholar]
- Sánchez, G.; Vergara, C. Plagas de los Cultivos Andinos, 2nd ed.; Universidad Nacional Agraria La Molina: Lima, Peru, 2002. [Google Scholar]
- Cranshaw, W.; Kondratieff, B.; Qian, T. Insects associated with quinoa, Chenopodium quinoa, in Colorado. J. Kans. Entomol. Soc. 1990, 63, 195–199. [Google Scholar]
- Oeller, E.; Clark, R.; Hinojosa, L.; Murphy, K.; Crowder, D. Effects of agronomic practices on Lygus spp. (Hemiptera: Miridae) population dynamics in quinoa. Environ. Entomol. 2021, 50, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, S.; Cinquanta, D.; Negri, M.; Dioli, P.; Limonta, L. Nysius cymoides (Spinola) on Chenopodium quinoa Willd. cultivated in Italy. J. Entomol. Acarol. Res. 2016, 48, 332–334. [Google Scholar] [CrossRef]
- Dioli, P.; Colamartino, A.; Negri, M.; Limonta, L. Hemiptera and Coleoptera on Chenopodium quinoa. Redia 2016, 99, 139–141. [Google Scholar]
- Allaoui, A.; Jellen, E.; Idrissi, N.; Zahid, A.; Benlhabib, O. Field screening of recombinant inbred lines (Rils) of quinoa (Chenopodium quinoa Wild.) for resistance to the tests. Int. J. Agric. Environ. Res. 2023, 9, 634–649. [Google Scholar]
- Dube, O.; Mudada, N.; Gama, T.; Muziri, T. A survey of insect pests attacking quinoa (Chenopodium quinoa) and their natural enemies in Zimbabwe. J. Plant Sci. 2022, 10, 91–95. [Google Scholar]
- Szczepaniec, A.; Alnajjar, G. New stem boring pest of quinoa in the United States. J. Integr. Pest Manag. 2023, 14, 5. [Google Scholar] [CrossRef]
- Dos Santos, K.B.; Meneguin, A.M.; Dos Santos, W.J.; Neves, P.M.; Dos Santos, R.B. Caracterização dos danos de Spodoptera eridania (Cramer) e Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) a estruturas de algodoeiro. Neotrop. Entomol. 2010, 39, 4. [Google Scholar] [CrossRef]
- Sigsgaard, L.; Jacobsen, S.; Christiansen, J. Quinoa, Chenopodium quinoa, provides a new host for native herbivores in Northern Europe: Case studies of the moth, Scrobipalpa atriplicella, and the tortoise Beetle, Cassida nebulosa. J. Insect Sci. 2008, 8, 1–4. [Google Scholar] [CrossRef]
- Povolný, D.; Valencia, L. Una Palomilla de Papa Nueva Para Colombia. In Memorias del Curso sobre Control Integrado de Plagas de Papa; Centro Internacional de la Papa: Bogotá, Colombia, 1986; pp. 33–35. [Google Scholar]
- Povolný, D. Eurysacca quinoae sp. a new quinoa-feeding species of the Tribe Gnorimoschemini (Lepidoptera, Gelechiidae) from Bolivia. Steenstrupia 1997, 22, 41–43. [Google Scholar]
- Hussain, A.; Hladun, S.; Vincent, M.; Wist, T.; Hillier, N.; Mori, B. Development of a pheromone monitoring system for the goosefoot groundling goth, Scrobipalpa atriplicella (von Röslerstamm) in quinoa, Chenopodium quinoa (Willdenow). Crop Prot. 2023, 165, 106166. [Google Scholar] [CrossRef]
- Mori, B.; Dutcheshen, C.; Wist, T. Scrobipalpa atriplicella (Lepidoptera: Gelechiidae), an invasive insect attacking quinoa (Amaranthaceae) in North America. Can. Entomol. 2017, 149, 534–539. [Google Scholar] [CrossRef]
- FAO. Integrated Pest Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: http://www.fao.org/agriculture/crops/core-themes/theme/pests/ipm/en/ (accessed on 1 July 2024).
- Bažok, R. Integrated pest management of field crops. Agriculture 2022, 12, 425. [Google Scholar] [CrossRef]
- SENASA. Servicio Nacional de Sanidad Agraria: Lista de Plaguicidas Agrícolas Registrados En El Perú. 2024. Available online: https://servicios.senasa.gob.pe/SIGIAWeb/sigia_consulta_producto.html (accessed on 5 January 2024).
- Quispe, R.; Saravia, R.; Villca, M.; Lino, V. Complejo polilla. In Plagas y Enfermedades del Cultivo de Quinua; Fundación PROINPA: Cochabamba, Bolivia, 2014; pp. 49–62. [Google Scholar]
- Damiani, F.; Brunetti, M.; Pannacci, E. Quinoa cultivation in Italy. In Food Science and Technology—Quinoa Cultivation, Nutritional Properties and Effect on Health; Nova Science Publisher: New York, NY, USA, 2019; pp. 1–31. [Google Scholar]
- Altieri, M.; Nicholls, C. Biodiversity and Pest Management in Agroecosystems, 2nd ed.; Food Products Press: New York, NY, USA, 2004. [Google Scholar]
- Ramani, S. Insect biodiversity and conservation of natural enemies in integrated pest management. Cent. Potato Res. Stn. 2013, 1–11. [Google Scholar]
- Thrupp, L.A. The importance of biodiversity in agroecosystems. J. Crop. Improv. 2004, 12, 315–337. [Google Scholar] [CrossRef]
- Palmquist, K.; Salatas, J.; Fairbrother, A. Pyrethroid Insecticides: Use, Environmental Fate, and Ecotoxicology. In Insecticides-advances in Integrated Pest Management; InTech Open: London, UK, 2012; pp. 251–278. [Google Scholar]
- Ravula, A.; Yenugu, S. Pyrethroid based pesticides–chemical and biological aspects. Crit. Rev. Toxicol. 2021, 51, 117–140. [Google Scholar] [CrossRef]
- Cruces, L.; de la Peña, E.; De Clercq, P. Field evaluation of cypermethrin, imidacloprid, teflubenzuron and emamectin benzoate against pests of quinoa (Chenopodium quinoa Willd.) and their side effects on non-target species. Plants 2021, 10, 1788. [Google Scholar] [CrossRef]
- Martínez, L.C.; Plata-Rueda, A.; Gonçalves, W.G.; Freire, A.F.; Zanuncio, J.C.; Bozdoğan, H.; Serrão, J.E. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Ecotoxicol. Environ. Saf. 2019, 167, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Desneux, N.; Fan, Y.; Han, P.; Ali, A.; Song, D.; Gao, X. Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption? Entomol. Gen. 2018, 37, 47–61. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Zhao, Y.; Wei, Y.; Mu, W.; Liu, F. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat. Pest Manag. Sci. 2016, 72, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Singh, D. Quinoa (Chenopodium quinoa Willd); Scientific Publishers: Jodhpur, India, 2019. [Google Scholar]
- Valoy, M.; Reguilón, C.; Podazza, G. The potential of using natural enemies and chemical compounds in quinoa for biological control of insect pests. In Quinoa: Improvement and Sustainable Production; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 63–86. [Google Scholar]
- Cruces, L.; de la Peña, E.; De Clercq, P. Insect diversity associated with quinoa (Chenopodium quinoa Willd.) in three altitudinal production zones of Peru. Int. J. Trop. Insect Sci. 2020, 40, 955–968. [Google Scholar] [CrossRef]
- Sánchez, G.; Vergara, C. Control Biológico Aplicado, 2nd ed.; Universidad Nacional Agraria La Molina: Lima, Peru, 2005. [Google Scholar]
- González Olazo, E.V.; Reguilón, C. Una nueva especie de Chrysoperla (Neuroptera: Chrysopidae) para la Argentina. Rev. Soc. Entomol. Argent. 2002, 61, 47–50. [Google Scholar]
- Valoy, M.; Bruno, M.; Prado, F.; González, J. Insectos asociados a un cultivo de quinoa en Amaicha del Valle, Tucumán, Argentina. Acta Zool. Lilloana 2011, 55, 16–22. [Google Scholar]
- Mamani, D. Control Biológico en Forma Natural de la Polilla de la Quinua (Eurysacca melanocampta Meyrick) por Parasitoides y Perspectivas de cría para su Manipulación en el Altiplano Central. Bachelor’s Thesis, Universidad Mayor de San Andrés, La Paz, Bolivia, 1998. [Google Scholar]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop. Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Cloyd, R.A. How effective is conservation biological control in regulating insect pest populations in organic crop production systems? Insects 2020, 11, 744. [Google Scholar] [CrossRef]
- Senior, L.J.; McEwen, P.K. The Use of Lacewings in biological control. In Lacewings in the Crop Environment; Cambridge University Press: New York, NY, USA, 2007; pp. 296–302. [Google Scholar]
- Souza, B.; Vázquez, L.L.; Marucci, R.C. Natural Enemies of Insect Pests in Neotropical Agroecosystems: Biological Control and Functional Biodiversity; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Venzon, M.; Martins, E.F.; Batista, M.C.; Botti, J.M.C.; Andrade, F.P.; Barroso, A.M. Green Lacewings and Their Role in Pest Management. Controle Alternativo de Pragas e Doenças: Opção Ou Necessidade? Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG): Belo Horizonte, MG, Brazil, 2021. [Google Scholar]
- Canard, M. Natural food and feeding habits of lacewings. In Lacewings in the Crop Environment; Cambridge University Press: New York, NY, USA, 2007; pp. 116–129. [Google Scholar]
- Garzón, A.; Freire, B.C.; Carvalho, G.A.; Oliveira, R.L.; Medina, P.; Budia, F. Development and reproduction of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) fed on Myzus persicae (Sulzer) (Hemiptera: Aphididae) Vectoring Potato Leafroll Virus (PLRV). Neotrop. Entomol. 2015, 44, 604–609. [Google Scholar] [CrossRef]
- Gamboa, S.; Souza, B.; Morales, R. Predatory Activity of Chrysoperla externa (Neuroptera: Chrysopidae) on Macrosiphum euphorbiae (Hemiptera: Aphididae) in Rosa sp. Crop. Rev. Colomb. Entomol. 2016, 42, 54–58. [Google Scholar] [CrossRef]
- Cruces, L.; de la Peña, E.; Livia, C.; De Clercq, P. Development, predation, and prey preference of Chrysoperla externa on Liorhyssus hyalinus and Nysius simulans, two emerging pests of quinoa. Neotrop. Entomol. 2022, 52, 273–282. [Google Scholar] [CrossRef]
- Cruces, L.; de la Peña, E.; De Clercq, P. Thermal biology of Liorhyssus hyalinus (Hemiptera: Rhopalidae) and Nysius simulans (Hemiptera: Lygaeidae), fed on the milky stage of maize grains. J. Insect Sci. 2022, 22, 1. [Google Scholar] [CrossRef]
- Wolfe, M.S. The Role of functional biodiversity in managing pests and diseases in organic production systems. In Proceedings of the an International Conference, Brighton, UK, 18–21 November 2002; Volume 1,2, pp. 531–538. [Google Scholar]
- Cancino-Espinoza, E.; Vázquez-Rowe, I.; Quispe, I.; Quispe, I. Organic quinoa (Chenopodium quinoa L.) Production in Peru: Environmental hotspots and food security considerations using life cycle assessment. Sci. Total Environ. 2018, 637, 221–232. [Google Scholar] [CrossRef]
- Muneret, L.; Mitchell, M.; Seufert, V.; Aviron, S.; Djoudi, E.; Pétillon, J.; Plantegenest, M.; Thiéry, D.; Rusch, A. evidence that organic farming promotes pest control. Nat. Sustain. 2018, 1, 361–368. [Google Scholar] [CrossRef]
- Holland, J.; Bianchi, F.; Entling, M.; Moonen, A.; Smith, B.; Jeanneret, P. Structure, function and management of semi-natural habitats for conservation biological control: A review of European studies. Pest Manag. Sci. 2016, 72, 1638–1651. [Google Scholar] [CrossRef]
- Croft, B.; Whalon, M. Selective toxicity of pyrethroid insecticides to arthropod natural enemies and pests of agricultural crops. Entomophaga 1982, 27, 3–21. [Google Scholar] [CrossRef]
- Cisneros, F. Control Químico de Las Plagas Agrícolas; Sociedad Entomológica del Perú: Lima, Peru, 2012. [Google Scholar]
- Hénault-Ethier, L. Health and Environmental Impacts of Pyrethroid Insecticides: What We Know, What We Don’t Know and What We Should Do about It. Executive Summary and Scientific Literature Review. 2015. Available online: https://www.equiterre.org/sites/fichiers/health_and_environmental_impacts_of_pyrethroid_insecticides_full_report_en.pdf (accessed on 5 January 2024).
- Hardy, M.C. Using selective insecticides in sustainable IPM; CABI Reviews: Oxfordshire, UK, 2011; Volume 6, pp. 1–7. [Google Scholar]
- Amor, F.; Medina, P.; Bengochea, P.; Canovas, M.; Vega, P.; Correia, R.; García, F.; Gómez, M.; Budia, F.; Viñuela, E.; et al. Effect of Emamectin benzoate under semi-field and field conditions on key predatory biological control agents used in vegetable greenhouses. Biocontrol Sci. Technol. 2012, 22, 219–232. [Google Scholar] [CrossRef]
- Govindan, K.; Gunasekaran, K.; Kuttalam, S. Emamectin Benzoate 5 SG: A safer insecticide to coccinellids predators in cotton ecosystem. Afr. J. Agric. Res. 2013, 8, 2455–2460. [Google Scholar]
- Torres, J.B.; Bueno, A.D.F. Conservation biological control using selective insecticides—A valuable tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V. Advances in Plant Breeding Strategies: Cereals; Springer International Publishing: Cham, Switzerland, 2019; Volume 5. [Google Scholar]
- Ruiz, K.; Biondi, S.; Oses, R.; Rodríguez, A.; Antognoni, F.; Martinez-Mosqueira, E.; Coulibaly, A.; Canahua-Murillo, A.; Pinto, M.; Zurita-Silva, A.; et al. Quinoa biodiversity and sustainability for food security under climate change. Agron. Sustain. Dev. 2014, 34, 349–359. [Google Scholar] [CrossRef]
- Research Institute for Agriculture, Fisheries and Food. Quinoa Breeding. Available online: https://pureportal.ilvo.be/en/projects/veredeling-van-quinoa (accessed on 5 May 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruces, L.; de la Peña, E.; De Clercq, P. Advances in the Integrated Pest Management of Quinoa (Chenopodium quinoa Willd.): A Global Perspective. Insects 2024, 15, 540. https://doi.org/10.3390/insects15070540
Cruces L, de la Peña E, De Clercq P. Advances in the Integrated Pest Management of Quinoa (Chenopodium quinoa Willd.): A Global Perspective. Insects. 2024; 15(7):540. https://doi.org/10.3390/insects15070540
Chicago/Turabian StyleCruces, Luis, Eduardo de la Peña, and Patrick De Clercq. 2024. "Advances in the Integrated Pest Management of Quinoa (Chenopodium quinoa Willd.): A Global Perspective" Insects 15, no. 7: 540. https://doi.org/10.3390/insects15070540
APA StyleCruces, L., de la Peña, E., & De Clercq, P. (2024). Advances in the Integrated Pest Management of Quinoa (Chenopodium quinoa Willd.): A Global Perspective. Insects, 15(7), 540. https://doi.org/10.3390/insects15070540