Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of Karyotype
2.2. Molecular Analysis
2.3. Morphology
3. Results
3.1. Karyotypes
3.1.1. Polyommatus ripartii (Figure 1A)
3.1.2. Polyommatus emmeli, sp. nov. (Figure 1B,C)
3.1.3. Polyommatus keleybaricus, sp. nov. (Figure 1D,E)
3.1.4. Polyommatus admetus yeranyani (Dantchenko et Lukhtanov, 2004) (Figure 1F)
3.1.5. Polyommatus demavendi belovi (Dantchenko et Lukhtanov, 2004) (Figure 1G,H)
3.1.6. Polyommatus demavendi antonius, subsp. nov. (Figure 1I)
3.2. Phylogenetic Analysis and Clustering of the Studied Samples by COI Haplotypes and Karyotypes
3.3. Color and Wing Pattern
4. Discussion
5. Description of New Taxa
- Polyommatus emmeli Dantchenko et Lukhtanov, sp. nov.
- Polyommatus keleybaricus Dantchenko et Lukhtanov, sp. nov.
- Polyommatus demavendi antonius Dantchenko et Lukhtanov, subsp. nov.
- Polyommatus ripartii kalashiani Dantchenko et Lukhtanov, subsp. nov.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of the Studied Samples of the Genus Polyommatus and Obtained COI Sequences
Species | BOLD/ Field Id | GenBank ID | Chromosome Number | Country | Locality |
P. admetus anatoliensis | BPAL617-11/G185 | PP600625 | n = 79 | Turkey | Ankara |
P. admetus anatoliensis | BPAL618-11/G219 | PP600626 | n = 79 | Turkey | Cappadocia |
P. admetus anatoliensis | BPAL705-11 | PP600627 | Turkey | Kelkit | |
P. admetus anatoliensis | BPAL707-11 | PP600628 | Turkey | Tercan | |
P. admetus anatoliensis | BPAL708-11 | PP600629 | Turkey | Tercan | |
P. admetus yeranyani | BPAL1330-12/154A08 | PP600630 | n = 79 | Armenia | Gnishik |
P. admetus yeranyani | BPAL1471-12/017A07 | PP600631 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1475-12/021A07 | PP600632 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1476-12/025A07 | PP600633 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1477-12/026A07 | PP600634 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1495-12/083A08 | PP600635 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1497-12/086A08 | PP600636 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1499-12/118A08 | PP600637 | Armenia | Landzhanist | |
P. admetus yeranyani | BPAL1501-12/148A08 | PP600638 | Armenia | Gnishik | |
P. admetus yeranyani | BPAL1503-12/155A08 | PP600639 | Armenia | Gnishik | |
P. demavendi belovi | 2018VLu112/003A07 | PP600640 | n = 73 | Armenia | Gnishik |
P. demavendi belovi | 2018Vlu113/050A07 | PP600641 | n = 74 | Armenia | Khosrov |
P. demavendi belovi | 2018Vlu114/121A07 | PP600642 | n = 75 | Armenia | Vokhchaberd |
P. demavendi belovi | 2018Vlu115/105A08 | PP600643 | Armenia | Khosrov | |
P. demavendi belovi | 2018Vlu116/106A08 | PP600644 | n = 73 | Armenia | Khosrov |
P. demavendi belovi | BPAL1308-12/077A08 | PP600645 | n = 73–74 | Armenia | Gnishik |
P. demavendi belovi | BPAL1309-12/079A08 | PP600646 | n = 73–74 | Armenia | Gnishik |
P. demavendi belovi | BPAL1478-12/049A07 | PP600647 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1479-12/052A07 | PP600648 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1480-12/055A07 | PP600649 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1481-12/119A07 | PP600650 | Armenia | Vokhchaberd | |
P. demavendi belovi | BPAL1482-12/120A07 | PP600651 | Armenia | Vokhchaberd | |
P. demavendi belovi | BPAL1492-12/002A08 | PP600652 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1493-12/010A08 | PP600653 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1494-12/011A08 | PP600654 | Armenia | Khosrov | |
P. demavendi belovi | BPAL1496-12/084A08 | PP600655 | Armenia | Gnishik | |
P. demavendi belovi | BPAL1498-12/107A08 | PP600656 | Armenia | Khosrov-Agasi | |
P. demavendi antonius Holotype | 2018Vlu117/140A07 | PP600657 | n = 71 | Armenia | Sevan |
P. demavendi antonius | 2018Vlu118/184A07 | PP600658 | n = 73 | Armenia | Sevan |
P. demavendi antonius | BPAL1483-12/137A07 | PP600659 | Armenia | Sevan | |
P. demavendi antonius | BPAL1484-12/139A07 | PP600660 | Armenia | Sevan | |
P. demavendi antonius | BPAL1485-12/156A07 | PP600661 | Armenia | Sevan | |
P. demavendi antonius | BPAL1486-12/158A07 | PP600662 | Armenia | Sevan | |
P. demavendi antonius | BPAL1488-12/190A07 | PP600663 | Armenia | Sevan | |
P. emmeli | 2018Vlu119/146A08 | PP600664 | nca78 | Armenia | Gnishik |
P. emmeli Holotype | 2018Vlu120/150A08 | PP600665 | n = 78 | Armenia | Gnishik |
P. emmeli | 2018Vlu121/152A08 | PP600666 | n = 78 | Armenia | Gnishik |
P. emmeli | 2018Vlu122/157A08 | PP600667 | n = 78 | Armenia | Gnishik |
P. emmeli | 2018Vlu123/154A08 | PP600668 | Armenia | Gnishik | |
P. emmeli | BPAL1307-12/319A08 | PP600669 | nca78 | Armenia | Gnishik |
P. emmeli | BPAL1314-12/318A08 | PP600670 | n = 78 | Armenia | Gnishik |
P. emmeli | BPAL1319-12/321A08 | PP600671 | nca78 | Armenia | Gnishik |
P. emmeli | BPAL1320-12/320A08 | PP600672 | n = 77 | Armenia | Gnishik |
P. emmeli | BPAL1487-12/164A07 | PP600673 | Armenia | Gnishik | |
P. emmeli | BPAL1500-12/147A08 | PP600674 | Armenia | Gnishik | |
P. emmeli | BPAL1509-12/228A08 | PP600675 | Armenia | Gnishik | |
P. emmeli | BPAL1510-12/265A08 | PP600676 | Armenia | Gnishik | |
P. eriwanensis | BPAL1468-12/007A07 | PP600677 | Armenia | Gnishik | |
P. eriwanensis | BPAL1469-12/008A07 | PP600678 | Armenia | Gnishik | |
P. eriwanensis | BPAL1473-12/019A07 | PP600679 | Armenia | Gnishik | |
P. eriwanensis | BPAL1474-12/020A07 | PP600680 | Armenia | Gnishik | |
P. keleybaricus Holotype | BPAL588-11/E262 | PP600681 | n = 86 | Iran | Keleybar |
P. keleybaricus | VL790 | PP600682 | Iran | Keleybar Makidi | |
P. keleybaricus | VL791 | PP600683 | Iran | Keleybar Makidi | |
P. keleybaricus | VL792 | PP600684 | Iran | Keleybar Makidi | |
P. ripartii kalashiani | BPAL1505-12/196A08 | PP600685 | Armenia | Gyumarants | |
P. ripartii kalashiani | BPAL1506-12/197A08 | PP600686 | Armenia | Gyumarants | |
P. ripartii kalashiani | BPAL1507-12/202A08 | PP600687 | Armenia | Gyumarants | |
P. ripartii kalashiani | BPAL1508-12/203A08 | PP600688 | Armenia | Gyumarants |
References
- de Queiroz, K. Ernst Mayr and the modern concept of species. Proc. Natl. Acad. Sci. USA 2005, 102 (Suppl. 1), 6600–6607. [Google Scholar] [CrossRef] [PubMed]
- Mayr, E. Animal Species and Evolution; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1963; pp. 1–797. [Google Scholar]
- Mallet, J. Alternative views of biological species: Reproductively isolated units or genotypic clusters? Natl. Sci. Rev. 2020, 7, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- de Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Coyne, J.A.; Orr, H.A. Speciation; Sinauer: Sunderland, MA, USA, 2004; pp. 1–545. [Google Scholar]
- Beheregaray, L.B.; Caccone, A. Cryptic biodiversity in a changing world. J. Biol. 2007, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Pfenninger, M.; Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 2007, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Marchio, E.A.; Piller, K.R. Cryptic diversity in a widespread live-bearing fish (Poeciliidae: Belonesox). Biol. J. Linn. Soc. 2013, 109, 848–860. [Google Scholar] [CrossRef]
- Marin, J.; Donnellan, S.C.; Hedges, S.B.; Puillandre, N.; Aplin, K.P.; Doughty, P.; Hutchinson, M.N.; Couloux, A.; Vidal, N. Hidden species diversity of Australian burrowing snakes (Ramphotyphlops). Biol. J. Linn. Soc. 2013, 110, 427–441. [Google Scholar] [CrossRef]
- Andrews, K.R.; Norton, E.L.; Fernandez-Silva, I.; Portner, E.; Goetze, E. Multilocus evidence for globally distributed cryptic species and distinct populations across ocean gyres in a mesopelagic copepod. Mol. Ecol. 2014, 23, 5462–5479. [Google Scholar] [CrossRef] [PubMed]
- Glazier, A.E.; Etter, R.J. Cryptic speciation along a bathymetric gradient. Biol. J. Linn. Soc. 2014, 113, 897–913. [Google Scholar] [CrossRef]
- Nygren, A. Cryptic polychaete diversity: A review. Zool. Scr. 2014, 43, 172–183. [Google Scholar] [CrossRef]
- Santos, H.; Juste, J.; Ibanez, C.; Palmeirim, J.M.; Godinho, R.; Amorim, F.; Alves, P.; Costa, H.; de Paz, O.; Perez-Suarez, G.; et al. Influences of ecology and biogeography on shaping the distributions of cryptic species: Three bat tales in Iberia. Biol. J. Linn. Soc. 2014, 112, 150–162. [Google Scholar] [CrossRef]
- Korshunova, T.; Picton, B.; Furfaro, G.; Mariottini, P.; Pontes, M.; Prkić, J.; Fletcher, K.; Malmberg, K.; Lundin, K.; Martynov, A. Multilevel fine-scale diversity challenges the ‘cryptic species’ concept. Sci. Rep. 2019, 9, 6732. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.P.; Allmon, W.D. How we study cryptic species and their biological implications: A case study from marine shelled gastropods. Ecol. Evol. 2023, 13, e10360. [Google Scholar] [CrossRef] [PubMed]
- Petrova, T.V.; Dvoyashov, I.A.; Bazhenov, Y.A.; Obolenskaya, E.V.; Lissovsky, A.A. An invisible boundary between geographic ranges of cryptic species of narrow-headed voles (Stenocranius, Lasiopodomys, Cricetidae) in Transbaikalia. Diversity 2023, 15, 439. [Google Scholar] [CrossRef]
- Fišer, C.; Robinson, C.T.; Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018, 27, 613–635. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Acoustic signals and speciation: The roles of natural and sexual selection in the evolution of cryptic species. Adv. Stud. Behav. 1997, 26, 317–354. [Google Scholar]
- Quattrini, A.M.; Wu, T.; Soong, K.; Jeng, M.-S.; Benayahu, Y.; McFadden, C.S. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol. Biol. 2019, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- King, M. Species Evolution: The Role of Chromosomal Change; Cambridge University Press: Cambridge, NY, USA, 1993; pp. 1–360. [Google Scholar]
- Adler, P.H.; Crosskey, R.W. Cytotaxonomy of the Simuliidae (Diptera): A systematic and bibliographic conspectus. Zootaxa 2015, 3975, 1–139. [Google Scholar] [CrossRef]
- Lukhtanov, V.A.; Kuznetsova, V.G. What genes and chromosomes say about the origin and evolution of insects and other arthropods. Russ. J. Genet. 2010, 46, 1115–1121. [Google Scholar] [CrossRef]
- Avise, J.C. Molecular Markers, Natural History, and Evolution, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2004; pp. 1–684. [Google Scholar]
- Noor, M.A.; Grams, K.L.; Bertucci, L.A.; Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA 2001, 98, 12084–12088. [Google Scholar] [CrossRef]
- Thaijarern, J.; Adler, P.H.; Pramual, P. Limited differentiation among black flies in the Simulium multistriatum species group (Diptera: Simuliidae) in Thailand: Cryptic species, homosequential species and homosequential cryptic species. Zool. J. Linn. Soc. 2018, 184, 1024–1054. [Google Scholar] [CrossRef]
- Schultz, D.T.; Haddock, S.H.D.; Bredeson, J.V.; Green, R.E.; Simakov, O.; Rokhsar, D.S. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023, 618, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Damas, J.; Corbo, M.; Kim, J.; Turner-Maier, J.; Farré, M.; Larkin, D.M.; Ryder, O.A.; Steiner, C.; Houck, M.L.; Hall, S.; et al. Evolution of the ancestral mammalian karyotype and syntenic regions. Proc. Natl. Acad. Sci. USA 2022, 119, e2209139119. [Google Scholar] [CrossRef] [PubMed]
- Simakov, O.; Marlétaz, F.; Yue, J.X.; O’Connell, B.; Jenkins, J.; Brandt, A.; Calef, R.; Tung, C.H.; Huang, T.K.; Schmutz, J.; et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 2020, 4, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Pazhenkova, E.A.; Lukhtanov, V.A. Whole-genome analysis reveals the dynamic evolution of holocentric chromosomes in Satyrine butterflies. Genes 2023, 14, 437. [Google Scholar] [CrossRef]
- Pazhenkova, E.A.; Lukhtanov, V.A. Chromosomal conservatism vs. chromosomal megaevolution: Enigma of karyotypic evolution in Lepidoptera. Chromosome Res. 2023, 31, 16. [Google Scholar] [CrossRef]
- Darwin Tree of Life Project Consortium. Sequence locally, think globally: The Darwin Tree of Life Project. Proc. Natl. Acad. Sci. USA 2022, 119, e2115642118. [Google Scholar] [CrossRef]
- Fu, X.; Meyer-Rochow, V.B.; Ballantyne, L.; Zhu, X. An improved chromosome-level genome assembly of the firefly Pyrocoelia pectoralis. Insects 2024, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Dantchenko, A.V.; Vishnevskaya, M.S.; Saifitdinova, A.F. Detecting cryptic species in sympatry and allopatry: Analysis of hidden diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. 2015, 116, 468–485. [Google Scholar] [CrossRef]
- Lukhtanov, V.A.; Sourakov, A.; Zakharov, E.V. DNA barcodes as a tool in biodiversity research: Testing pre-existing taxonomic hypotheses in Delphic Apollo butterflies (Lepidoptera, Papilionidae). Syst. Biodivers. 2016, 14, 599–613. [Google Scholar] [CrossRef]
- Wiemers, M.; Stradomsky, B.V.; Vodolazhsky, D.I. A molecular phylogeny of Polyommatus s. str. and Plebicula based on mitochondrial COI and nuclear ITS2 sequences (Lepidoptera: Lycaenidae). Eur. J. Entomol. 2010, 107, 325–336. [Google Scholar] [CrossRef]
- Wiemers, M. Chromosome Differentiation and the Radiation of the Butterfly Subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus) a Molecular Phylogenetic Approach. Ph.D. Dissertation, University of Bonn, Bonn, Germany, 2003; pp. 1–203. Available online: https://hdl.handle.net/20.500.11811/1944 (accessed on 30 October 2023).
- Wiemers, M.; Fiedler, K. Does the DNA barcoding gap exist?—A case study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 2007, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Wiemers, M.; Keller, A.; Wolf, M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol. 2009, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Eckweiler, W.; Häuser, C.L. An illustrated checklist of Agrodiaetus Hübner, 1822, subgenus of Polyommatus Latreille, 1804 (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo Suppl. 1997, 16, 113–168. [Google Scholar]
- Häuser, C.L.; Eckweiler, W. A catalogue of the species-group taxa in Agrodiaetus Hübner, 1822, a subgenus of Polyommatus Latreille, 1804 (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo Suppl. 1997, 16, 53–112. [Google Scholar]
- Eckweiler, W.; Bozano, G.C. Guide to the Butterflies of the Palearctic Region. Lycaenidae Part IV; Omnes Artes: Trevglio, Italy, 2016; pp. 1–132. [Google Scholar]
- Lukhtanov, V.A.; Shapoval, N.A.; Dantchenko, A.V. Taxonomic position of several enigmatic Polyommatus (Agrodiaetus) species (Lepidoptera, Lycaenidae) from Central and Eastern Iran: Insights from molecular and chromosomal data. Comp. Cytogenet. 2014, 8, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Shapoval, N.A.; Dantchenko, A.V.; Eckweiler, W. Phylogenetic structure revealed through combining DNA barcodes with multi-gene data for Agrodiaetus blue butterflies (Lepidoptera, Lycaenidae). Insects 2023, 14, 769. [Google Scholar] [CrossRef] [PubMed]
- Lesse, H. De Spéciation et variation chromosomique chez les Lépidoptères Rhopalocères. Ann. Soc. Nat. Zool. 1960, 122, 1–223. [Google Scholar]
- Lesse, H. De Les nombres de chromosomes dans la classification du groupe d’Agrodiaetus ripartii Freyer (Lepidoptera, Lycaenidae). Rev. Francaise d’Entomol. 1960, 27, 240–264. [Google Scholar]
- Kolev, Z. Two Polyommatus (Agrodiaetus) species new to Bulgaria, with notes on the related Bulgarian taxa (Lepidoptera: Lycaenidae). Phegea 1994, 22, 61–71. [Google Scholar]
- Kolev, Z.; De Prins, W. A new species of the “brown Agrodiaetus” complex from the Crimea (Lepidoptera, Lycaenidae). Phegea 1995, 23, 119–132. [Google Scholar]
- Kolev, Z.; Van der Poorten, D. Review of the distribution of the Balkan endemic Polyommatus (Agrodiaetus) aroaniensis (Lepidoptera: Lycaenidae), with notes on its sympatry with related species. Phegea 1997, 25, 35–40. [Google Scholar]
- Coutsis, J.G.; De Prins, J. A new brown Polyommatus (Agrodiaetus) from northern Greece (Lepidoptera, Lycaenidae). Phegea 2005, 33, 129–137. [Google Scholar]
- Kolev, Z. Polyommatus dantchenkoi (Lukhtanov, Wiemers, 2003) tentatively identified as new to Europe, with a description of a new taxon from the Balkan Peninsula (Lycaenidae). Nota Lepidopterol. 2005, 28, 25–34. [Google Scholar]
- Coutsis, J.G.; De Prins, J. The chromosome number and karyotype of Polyommatus (Agrodiaetus) nephohiptamenos (Lepidoptera, Lycaenidae). Phegea 2007, 35, 27–29. [Google Scholar]
- Koren, T. New data about the distribution of anomalous blue Polyommatus admetus (Esper, 1783) (Lepidoptera: Lycaenidae) in Croatia. Acta Entomol. Serbica 2010, 15, 221–226. [Google Scholar]
- Vershinina, A.O.; Lukhtanov, V.A. Geographical distribution of the cryptic species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis. Comp. Cytogenet. 2010, 4, 1–11. [Google Scholar] [CrossRef]
- Koren, T.; Laus, B. The Grecian anomalous blue Polyommatus (Agrodiaetus) aroaniensis (Brown, 1976) (Lepidoptera: Lycaneidae) discovered in Croatia, at the north-western edge of its distribution. Nat. Slov. 2015, 17, 47–57. [Google Scholar] [CrossRef]
- Lovrencic, L.; Podnar, M.; Sasic, M.; Koren, T.; Tvrtkovic, N. Molecular data do not confirm the Grecian anomalous blue Polyommatus (Agrodiaetus) aroaniensis (Brown, 1976) as a member of the Croatian fauna. Nat. Croat. 2016, 25, 119–129. [Google Scholar] [CrossRef]
- Coutsis, J.G.; De Prins, W.; Puplesiene, J. The chromosome number and karyotype of Polyommatus (Agrodiaetus) ripartii and Polyommatus (Agrodiaetus) aroaniensis from Greece (Lepidoptera, Lycaenidae). Phegea 1999, 27, 81–84. [Google Scholar]
- Koren, T. First finding of Ripart’s Anomalous Blue Polyommatus (Agrodiaetus) ripartii (Freyer, 1830) (Lepidoptera, Lycaenidae) in Croatia. Nat. Croat. 2010, 19, 463–467. [Google Scholar]
- Dinca, V.; Runquist, M.; Nilsson, M.; Vila, R. Dispersal, fragmentation and isolation shape: The phylogeography of the European lineages of Polyommatus (Agrodiaetus) ripartii (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. 2013, 109, 817–829. [Google Scholar] [CrossRef]
- Przybyłowicz, Ł.; Lukhtanov, V.; Lachowska-Cierlik, D. Towards the understanding of the origin of the Polish remote population of Polyommatus (Agrodiaetus) ripartii (Lepidoptera: Lycaenidae) based on karyology and molecular phylogeny. J. Zool. Syst. Evol. Res. 2014, 52, 44–51. [Google Scholar] [CrossRef]
- Vila, R.; Lukhtanov, V.A.; Talavera, G.; Gil-T, F.; Pierce, N.E. How common are dot-like distribution ranges? Taxonomical oversplitting in Western European Agrodiaetus (Lepidoptera, Lycaenidae) revealed by chromosomal and molecular markers. Biol. J. Linn. Soc. 2010, 101, 130–154. [Google Scholar] [CrossRef]
- Vishnevskaya, M.S.; Saifitdinova, A.F.; Lukhtanov, V.A. Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula. Comp. Cytogenet. 2016, 10, 1–85. [Google Scholar] [CrossRef] [PubMed]
- Hesselbarth, G.; Oorchot, H.; Wagener, S. Die Tagfalter der Türkei unter Berücksichtigung der Angrenzenden Länder; Selbstverlag Siegbert Wagener: Bocholt, Germany, 1995; Volume 1–3, pp. 1–1354. [Google Scholar]
- Hajibabaei, M.; deWaard, J.R.; Ivanova, N.V.; Ratnasingham, S.; Dooh, R.T.; Kirk, S.L.; Mackie, P.M.; Hebert, P.D.N. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1959–1967. [Google Scholar] [CrossRef]
- Ivanova, N.V.; deWaard, J.R.; Hebert, P.D.N. An inexpensive, automation-friendly protocol for recovering high quality DNA. Mol. Ecol. Resour. 2006, 6, 998–1002. [Google Scholar] [CrossRef]
- deWaard, J.R.; Ivanova, N.V.; Hajibabaei, M.; Hebert, P.D.N. Assembling DNA barcodes: Analytical protocols. In Environmental Genomics, Methods in Molecular Biology; Martin, C.C., Ed.; Humana Press: Totowa, NJ, USA, 2008; Volume 410, pp. 275–283. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Wilson, J.J. DNA Barcodes for Insects. In DNA Barcodes: Methods and Protocols; Kress, W.J., Erickson, D.L., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 858, pp. 17–46. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Dantchenko, A.V. Karyotype of Polyommatus (Agrodiaetus) eriwanensis Forster, 1960 and taxonomic position of P. (A.) interjectus de Lesse, 1960 (Lepidoptera, Lycaenidae). Comp. Cytogenet. 2019, 13, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Ferree, P.M.; Barbash, D.A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. 2009, 7, e1000234. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, J.; Jolly, M.S. Interspecific hybrids of Antheraea roylei and A. pernyi—A cytogenetic reassessment. Theor. Appl. Genet. 1986, 72, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Barton, N.H. Accumulating postzygotic isolation genes in parapatry: A new twist on chromosomal speciation. Evolution 2003, 57, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Navarro, A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010, 25, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, M.; Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 2006, 173, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.F.; Kirkpatrick, M. Local adaptation and the evolution of chromosome fusions. Evolution 2014, 68, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Boman, J.; Wiklund, C.; Vila, R.; Backström, N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res. 2024, 32, 7. [Google Scholar] [CrossRef]
- Vershinina, A.O.; Lukhtanov, V.A. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Sci. Rep. 2017, 7, 8199. [Google Scholar] [CrossRef]
- Ferris, S.D.; Sage, R.D.; Huang, C.-M.; Nielsen, J.T.; Ritte, U.; Wilson, A.C. Flow of mitochondrial DNA across a species boundary. Proc. Natl. Acad. Sci. USA 1983, 80, 2290–2294. [Google Scholar] [CrossRef] [PubMed]
- Rawson, P.; Hilbish, T. Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution 1998, 52, 100–108. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.A.; Linkem, C.W.; Koo, M.S.; Hutchison, D.W.; Lappin, A.K.; Orange, D.I.; Lemos-Espinal, J.; Riddle, B.R.; Jaeger, J.R. Mitochondrial introgression and incomplete lineage sorting through space and time: Phylogenetics of Crotaphytid lizards. Evolution 2007, 61, 2879–2897. [Google Scholar] [CrossRef] [PubMed]
- Plötner, J.; Uzzell, T.; Beerli, P.; Spolsky, C.; Ohst, T.; Litvinchuk, S.N.; Guex, G.-D.; Reyer, H.-U.; Hotz, H. Widespread unidirectional transfer of mitochondrial DNA: A case in western Palearctic water frogs. J. Evol. Biol. 2008, 21, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Nevado, B.; Koblmüller, S.; Sturmbauer, C.; Snoeks, J.; Usano-Alemany, J.; Verheyen, E. Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol. Ecol. 2009, 18, 4240–4255. [Google Scholar] [CrossRef] [PubMed]
- Pons, J.-M.; Sonsthagen, S.; Dove, C.; Crochet, P.-A. Extensive mitochondrial introgression in North American Great Black-backed Gulls (Larus marinus) from the American Herring Gull (Larus smithsonianus) with little nuclear DNA impact. Heredity 2014, 112, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Halas, D.; Simons, A.M. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference. Mol. Phylogenet. Evol. 2014, 70, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Beljaev, E.A.; Sota, T. Phylogenetic analysis of the winter geometrid genus Inurois reveals repeated reproductive season shifts. Mol. Phylogenet. Evol. 2016, 94, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, F. Contribution á la connaissance du genre Agrodiaetus Hübner (1822), A. ahmadi et A. khorasanensis nouvelles especes dans le Nord de l’Iran (Lepidoptera: Lycaenidae). Linneana Belg. 2001, 18, 105–110. [Google Scholar]
- Dufresnes, C.; Poyarkov, N.; Jablonski, D. Acknowledging more biodiversity without more species. Proc. Natl. Acad. Sci. USA 2023, 120, e2302424120. [Google Scholar] [CrossRef]
- Coutsis, J.G. The blue butterflies of the genus Agrodiaetus Hübner (Lep., Lycaenidae): Symptoms of taxonomic confusion. Nota Lepid. 1986, 9, 159–169. [Google Scholar]
- Sytin, A.K. A new species Onobrychis takhtajanii (Fabaceae) from Armenia. Botanicheskii Zhurnal. 2000, 85, 177–180. [Google Scholar]
- Arevschatian, I. Genus Onobrychis in Southern Transcaucasia. Flora Veg. Plant Resour. Armen. 2009, 17, 23–27. [Google Scholar]
Species | Lab Id | GenBank# | Chromosome Number | Locality | Reference |
---|---|---|---|---|---|
P. emmeli | KL-49-97 | n = 79 | Armenia, Gnishik | This study | |
P. emmeli | 183A07 | n = ca79 | Armenia, Sevan Lake | This study | |
P. emmeli | 146A08 | PP600664 | n = ca78 | Armenia, Gnishik | This study |
P. emmeli Holotype | 150A08 | PP600665 | n = 78 | Armenia, Gnishik | This study |
P. emmeli | 152A08 | PP600666 | n = 78 | Armenia, Gnishik | This study |
P. emmeli | 157A08 | PP600667 | n = 78 | Armenia, Gnishik | This study |
P. emmeli | 158A08 | n = 79 | Armenia, Gnishik | This study | |
P. emmeli | 318A08 | PP600670 | n = 78 | Armenia, Gnishik | This study |
P. emmeli | 319A08 | PP600669 | n = ca78 | Armenia, Gnishik | This study |
P. emmeli | 320A08 | PP600672 | n = 77 | Armenia, Gnishik | This study |
P. emmeli | 321A08 | PP600671 | n = ca77 | Armenia, Gnishik | This study |
P. emmeli | 234K16A | n = 77 | Armenia, Vayots Dzor | This study | |
P. emmeli | 243K16A | n = 77 | Armenia, Sevan Lake, Madina | This study | |
P. emmeli | 584K15 | n = 77 | Armenia, Sevan Lake, Artanish | This study | |
P. ripartii ripartii | 022K19 | n = 90 | Tajikistan, Jirgatol | This study | |
P. ripartiiparalcestis | Dan2001-13 | n = ca90 | Armenia, Ja Joor pass | This study | |
P. ripartii kalashiani Holotype | 198A08 | n = ca90 | Armenia, Shvanidzor | This study | |
P. ripartii kalashiani | 201A08 | n = ca90 | Armenia, Shvanidzor | This study | |
P. ripartii kalashiani | 209A08 | n = ca90 | Armenia, Shvanidzor | This study | |
P. keleybaricus | E250 | n = ca86 | Iran, Keleybar, Makidi | This study | |
P. keleybaricus | E258 | n = ca86 | Iran, Keleybar, Makidi | This study | |
P. keleybaricus | E260 | EF104628 | n = 86 | Iran, Keleybar, Makidi | This study |
P. keleybaricus | E261 | n = ca86 | Iran, Keleybar, Makidi | This study | |
P. keleybaricus Holotype | E262 | PP600681 | n = 86 | Iran, Keleybar, Makidi | This study |
P. admetus | E311 | n = 79 | Iran, Azerbaijan-e Sharqi, Varzagan | This study | |
P. admetus yeranyani | KL-34-96 | n = ca80 | Armenia, Aragats | This study | |
P. admetus yeranyani | KL-50-97 | n = 79 | Armenia, Aragats | This study | |
P. admetus yeranyani | KL-67-97 | n = 79 | Armenia, Megri, Lichk | This study | |
P. admetus yeranyani | 154A08 | PP600630 | n = 79 | Armenia, Gnishik | This study |
P. admetus yeranyani | 211A08 | n = 79 | Armenia, Gyumarants | This study | |
P. demavendi belovi | KL-28-97 | n = 74 | Armenia, Khosrov | This study | |
P. demavendi belovi | 003A07 | n = 73 | Armenia, Gnishik | This study | |
P. demavendi belovi | 050A07 | n = 74 | Armenia, Khosrov | This study | |
P. demavendi belovi | 051A07 | n = 74 | Armenia, Khosrov | This study | |
P. demavendi belovi | 054A07 | n = 74 | Armenia, Khosrov | This study | |
P. demavendi belovi | 064A07 | n = 73 | Armenia, Khosrov | This study | |
P. demavendi belovi | 070A07 | n = 73 | Armenia, Khosrov | This study | |
P. demavendi belovi | 077A08 | n = 74 | Armenia, Gnishik | This study | |
P. demavendi belovi | 079A08 | n = 74 | Armenia, Gnishik | This study | |
P. demavendi belovi | 106A08 | n = 73 | Armenia, Khosrov | This study | |
P. demavendi belovi | 121A07 | n = 75 | Armenia, Vohkchaberd | This study | |
P. demavendi belovi | 2002Q479 | n = ca73 | Armenia, Khosrov | This study | |
P. d. antonius | 138A07 | n = ca72 | Armenia, Sevan Lake | This study | |
P. d. antonius Holotype | 140A07 | PP600657 | n = 71 | Armenia, Sevan Lake | This study |
P. d. antonius | 151A07 | n = 71 | Armenia, Sevan Lake | This study | |
P. d. antonius | 184A07 | PP600658 | n = ca73 | Armenia, Sevan Lake | This study |
P. d. antonius | 192A07 | n = 71 | Armenia, Sevan Lake | This study | |
P. d. antonius | 195A07 | n = ca71 | Armenia, Sevan Lake | This study | |
P. eriwanensis | KL-1996-34-1 | ca32 | Armenia, Aragats | [71] | |
P. eriwanensis | KL-1997-6-1 | ca34 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-6-4 | n = ca31 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-6-7 | n = 34 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-6-8 | n = ca34 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-6-9 | n = 33 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-7 | n = 29 | Armenia, Garny | [71] | |
P. eriwanensis | KL-1997-76-1 | n = 34 | Armenia, Gnishik | [71] | |
P. eriwanensis | AD2001-Nr4 | n = ca30 | Armenia, Geghadir | [71] | |
P. eriwanensis | AD2001-008 | n = 34 | Armenia, Gnishik | [71] | |
P. eriwanensis | 001A07 | n = 34 | Armenia, Gnishik | [71] | |
P. eriwanensis | 002A07 | n = 32 | Armenia, Gnishik | [71] | |
P. eriwanensis | 004A07 | n = 32 | Armenia, Gnishik | [71] | |
P. eriwanensis | 004A09 | n = ca32 | Armenia, Gnishik | [71] |
Taxa | Chromosome Number | Distribution Range | Reference |
---|---|---|---|
P. admetus admetus | n = 80 | Balkan Peninsula, West Turkey | [45,61] |
P. admetus anatoliensis | n = 78–79 | East Turkey | [45] |
P. admetus malievi | n = 78–79 | Azerbaijan | [33] |
P. admetus yeranyani | n = 79 | Armenia | This study |
P. demavendi amasyensis (de Lesse, 1961) | n = 70–72 | Northern Central Turkey | [45] |
P. demavendiantonius | n = 71–73 | North Armenia | This study |
P. demavendi belovi | n = 73–75 | Armenia | This study |
P. demavendi demavendi | n = 67–72 | North Iran, East Turkey | [45] |
P. demavendi lorestanus | n = 69–72 | Iran (North and Central Zagros) | [45] |
P. emmeli | n = 77–79 | Armenia | This study |
P. eriwanensis | n = 29–34 | Armenia | [71] |
P. keleybaricus | n = 86 | Northwest Iran | This study |
P. khorasanensis | n = 84 | Northeast Iran | [33] |
P. pseudorjabovi | n = 79 | Azerbaijan | [33] |
P. ripartii kalashiani | n = ca90 | Southeast Armenia | This study |
P. ripartii paralcestis | n = 90 | East Turkey, West Armenia | [45] |
P. ripartii ripartii | n = 90 | from Spain to Mongolia and Central Asia | [45,59,60,61], this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukhtanov, V.A.; Dantchenko, A.V. Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran. Insects 2024, 15, 545. https://doi.org/10.3390/insects15070545
Lukhtanov VA, Dantchenko AV. Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran. Insects. 2024; 15(7):545. https://doi.org/10.3390/insects15070545
Chicago/Turabian StyleLukhtanov, Vladimir A., and Alexander V. Dantchenko. 2024. "Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran" Insects 15, no. 7: 545. https://doi.org/10.3390/insects15070545
APA StyleLukhtanov, V. A., & Dantchenko, A. V. (2024). Cryptic Taxa Revealed through Combined Analysis of Chromosomes and DNA Barcodes: The Polyommatus ripartii Species Complex in Armenia and NW Iran. Insects, 15(7), 545. https://doi.org/10.3390/insects15070545