Predatory Potential of Nymphal Odonates on Aedes aegypti Developing in Freshwater and Brackish Water Habitats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Freshwater and Brackish Water Aedes aegypti Colonies
2.3. Field Survey to Identify the Presence of Odonate Nymphs in Potential Aedes Larval Development Habitats
2.4. Species Identification of the Nymphal Predators
2.5. Collection and Maintenance of Odonate Nymphal Predators for the Experiment
2.6. Evaluation of the Predatory Efficiency of Different Odonates Using Mesocosm Set-Ups
2.7. Data Collection and Statistical Analysis
3. Results
3.1. Field Collection of Nymphal Odonates from Aedes Developing Habitats
3.2. Field Collection of Nymphal Odonates from the Ponds
3.3. Species Identification and Their Confirmation
3.4. The Predatory Rate (PR) and Predatory Impact (PI) of the Predators in Freshwater and Brackish Water Experiments
3.5. Clearance Rate of the Predators in Freshwater and Brackish Water Experiments
3.6. Cluster Analysis on the Clearance Rate (CR) of the Nymphal Predators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Dengue Guidelines, for Diagnosis, Treatment, Prevention and Control. 2009. Available online: https://www.who.int/publications/i/item/9789241547871 (accessed on 14 June 2024).
- Surendran, S.N.; Senthilnanthanan, M.; Jayadas, T.T.P.; Karunaratne, S.H.P.P.; Ramasamy, R. Impact of salinization and pollution of groundwater on the adaptation of mosquito vectors in the Jaffna peninsula, Sri Lanka. Ceylon J. Sci. 2020, 49, 135–150. [Google Scholar] [CrossRef]
- Epidemiology Unit. Weekly Epidemiological Report. Available online: https://www.epid.gov.lk/epid/public/index.php/weekly-epidemiological-report/weekly-epidemiological-report (accessed on 13 June 2024).
- WHO. Disease Outbreak News: Dengue—Global Situation. 2024. Available online: https://reliefweb.int/report/world/disease-outbreak-news-dengue-global-situation-30-may-2024 (accessed on 14 June 2024).
- Nelson, M.J. Aedes aegypti: Biology and Ecology; Pan American Health Organization: Washington, DC, USA, 1986. [Google Scholar]
- Ramasamy, R.; Surendran, S.N. Possible impact of rising sea levels on vector-borne infectious diseases. BMC Infect. Dis. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.E.; Alves, J.M.; Palmer, W.J.; Day, J.P.; Sylla, M.; Ramasamy, R.; Surendran, S.N.; Black, W.C., IV; Pain, A. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Sivabalakrishnan, K.; Thanihaichelvan, M.; Tharsan, A.; Eswaramohan, T.; Ravirajan, P.; Hemphill, A.; Ramasamy, R.; Surendran, S.N. Resistance to the larvicide temephos and altered egg and larval surfaces characterize salinity-tolerant Aedes aegypti. Sci. Rep. 2023, 13, 8160. [Google Scholar] [CrossRef]
- Surendran, S.N.; Jayadas, T.T.P.; Thiruchenthooran, V.; Raveendran, S.; Tharsan, A.; Santhirasegaram, S.; Sivabalakrishnan, K.; Karunakaran, S.; Ponnaiah, B.; Gomes, L.; et al. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka. Parasites Vectors 2021, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Surendran, S.N. Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones. Front. Physiol. 2012, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chun, L.; Telisinghe, L.; Hossain, M.M.; Ramasamy, R. Vaccine development against dengue and shigellosis and implications for control of the two diseases in Brunei Darussalam. Brunei Darussalam J. Health 2007, 2, 60–71. [Google Scholar]
- National Dengue Control Unit. Current Dengue Situation. 2023. Available online: https://reliefweb.int/report/sri-lanka/national-dengue-control-unit-current-dengue-situation (accessed on 14 June 2024).
- Devendra, M.; Sharma, V.K.; Pal, A. Biological control on mosquito population by Bradinopgya geminata. Natl. J. Life Sci. 2019, 16, 75–77. [Google Scholar]
- Venkatesh, A.; Tyagi, B. Bradinopyga geminata (Anisoptera: Libellulidae) as a predator of Aedes aegypti immatures (Diptera: Culicidae). Int. J. Mosq. Res. 2015, 2, 98–105. [Google Scholar]
- Akram, W.; Ali-Khan, H.A. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae). J. Arthropod-Borne Dis. 2016, 10, 252–257. [Google Scholar]
- Ramasamy, R.; Jude, P.J.; Veluppillai, T.; Eswaramohan, T.; Surendran, S.N. Biological Differences between Brackish and Fresh Water-Derived Aedes aegypti from Two Locations in the Jaffna Peninsula of Sri Lanka and the Implications for Arboviral Disease Transmission. PLoS ONE 2014, 9, e104977. [Google Scholar] [CrossRef] [PubMed]
- Samanmali, C.; Udayanga, L.; Ranathunge, T.; Perera, S.J.; Hapugoda, M.; Weliwitiya, C. Larvicidal potential of five selected Dragonfly Nymphs in Sri Lanka over Aedes aegypti (Linnaeus) larvae under laboratory settings. BioMed Res. Int. 2018, 1, 8759459. [Google Scholar] [CrossRef]
- Fonseka, T.D. The Dragonflies of Sri Lanka, 1st ed.; WHT Publications: Colombo, Sri Lanka, 2000; 332p. [Google Scholar]
- Yum, J.W.; Hea, Y.L.; Yeon, J.B. Taxonomic Review of the Korean Zygoptera (Odonata). Entomol. Res. Bull. 2010, 26, 41–55. [Google Scholar]
- Jin, I.K. Insect Fauna of Korea, 1st ed.; Chong-chun, K., Ed.; National Institute of Biological Resources Environmental Research Complex: Incheon, Republic of Korea, 2011; 262p. [Google Scholar]
- Nesemann, H.; Devi, R.; Tachamo Shah, R.D.; Shah, D.N.; Shah, D.N. Key to the larval stages of common Odonata of Hindu Kush Himalaya, with short notes on habitats and ecology. J. Threat. Taxa 2013, 3, 2045–2060. [Google Scholar] [CrossRef]
- Livak, K.J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 1984, 107, 611–634. [Google Scholar] [CrossRef] [PubMed]
- Sivasingham, A.; Tharsan, A.; Eswaramohan, T.; Raveendran, S.; Surendran, S.N. Detection of preimaginal forms of dengue vectors from environmental samples in Jaffna city, northern Sri Lanka: An eDNA-based approach. Ceylon J. Sci. 2023, 52, 127–131. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Jayadas, T.T.P.; Thiruchenthooran, V.; Tharsan, A.; Sivabalakrishnan, K.; Santhirasekaram, S.; Surendran, S.N. First record of the presence of Aedes (Phagomyia) cogilli (Edwards, 1922) in Sri Lanka. J. Natn. Sci. Found. Sri Lanka 2020, 48, 327–331. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Singh, R.K.; Dhiman, R.C.; Singh, S.P. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 2003, 35, 96–101. [Google Scholar]
- Choo, M.Z.J.; Low, B.W.; Ngiam, R.W.J.; Yeo, D.C.J. Predation of mosquitos by odonates in a tropical urban environment: Insights from functional response and field mesocosm experiments. Biol. Control 2021, 161, 104702. [Google Scholar] [CrossRef]
- Ramlee, S.; Mohd, S.A. Odonata nymphs as potential biocontrol agent of mosquito larvae in Malaysia. Southeast Asian J. Trop. Med. Public Health 2022, 53, 426–435. [Google Scholar]
- Rahman, K.M.Z.; Rahman, M.d.A.; Sharif, M.; Mia, M.; Kamal, M.; Razzak, M.; Bashar, K. Predatory efficiency of dragonfly nymphs, Crocothemis servilia and Rhyothemis variegata against the mosquito, Culex quinquefasciatus Say. Asian-Australas. J. Biosci. Biotechnol. 2022, 7, 82–89. [Google Scholar] [CrossRef]
- Olkeba, B.K.; Goethals, P.L.M.; Boets, P.; Duchateau, L.; Degefa, T.; Eba, K.; Yewhalaw, D.; Mereta, S.T. Mesocosm Experiments to Quantify Predation of Mosquito Larvae by Aquatic Predators to Determine Potential of Ecological Control of Malaria Vectors in Ethiopia. Int. J. Environ. Res. Public Health 2021, 18, 6904. [Google Scholar] [CrossRef]
- Aditya, G.; Ash, A.; Saha, G.K. Predatory activity of Rhantus sikkimensis and larvae of Toxorhynchites splendens on mosquito larvae in Darjeeling, India. J. Vector Borne Dis. 2006, 43, 66–72. [Google Scholar]
- Saha, N.; Aditya, G.; Saha, G.K.; Hampton, S.E. Opportunistic foraging by heteropteran mosquito predators. Aquat. Ecol. 2010, 44, 167–176. [Google Scholar] [CrossRef]
- Venkatesh, A.; Tyagi, B.K. Capture efficiency of Bradinopyga geminata (Odonata: Libellulidae) against larvae of Aedes aegypti, Culex tritaeniorhynchus and Anopheles stephensi in laboratory condition. J. Basic Appl. Biol. 2013, 7, 21–26. [Google Scholar]
- Jacob, S.; Thomas, A.P.; Manju, E. Bio control efficiency of Odonata nymphs on Aedes aegypti larvae. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 1–4. [Google Scholar]
- Gilbert, J.J.; Burns, C.W. Some observations on the diet of the backswimmer, Anisops wakefieldi (Hemiptera: Notonectidae). Hydrobiologia 1999, 412, 111–118. [Google Scholar] [CrossRef]
- Chandra, G.; Bhattacharjee, I.; Chatterjee, S.N.; Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 2008, 127, 13–27. [Google Scholar]
- Walton, W.E. Larvivorous fish including Gambusia. J. Am. Mosq. Control Assoc. 2007, 23, 184–220. [Google Scholar] [CrossRef] [PubMed]
- Vu, S.N.; Nguyen, T.Y.; Tran, V.P.; Truong, U.N.; Le, Q.M.; Lo, L.V.; Nghia, L.T.; Bektas, A.; Briscombe, A.; Aaskov, J.; et al. Elimination of dengue by community programs using Mesocyclops (Copepoda) against Aedes aegypti in central Vietnam. Am. J. Trop. Med. Hyg. 2005, 72, 67–73. [Google Scholar] [PubMed]
- Hales, S.; van Panhuis, W. A new strategy for dengue control. Lancet 2005, 365, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Bowatte, G.; Perera, P.; Senevirathne, G.; Boyagoda, S.; Meegaskumbura, M. Tadpoles as Dengue Mosquito (Aedes aegypti) egg predators. Biol Control. 2013, 67, 469–474. [Google Scholar] [CrossRef]
- Eba, K.; Duchateau, L.; Olkeba, B.K.; Boets, P.; Bedada, D.; Goethals, P.L.M.; Mereta, S.T.; Yewhalaw, D. Bio-Control of Anopheles Mosquito Larvae Using Invertebrate Predators to Support Human Health Programs in Ethiopia. Int. J. Environ. Res. Public Health 2021, 18, 1810. [Google Scholar] [CrossRef]
- Sathe, T.V.; Bhusnar, A.R. Mosquito larvae consumption rate by a dragonfly, Panatala flaviscens (fab.) (Order: Odonata). Life Sci. Bull. 2011, 8, 107–108. [Google Scholar]
- Okuda, G.; Futahashi, R.; Tanahashi, M.; Fukatsu, T. Laboratory Rearing System for Ischnura senegalensis (Insecta: Odonata) Enables Detailed Description of Larval Development and Morphogenesis in Dragonfly. Zool. Sci. 2017, 34, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Jinguji, H.; Sawada, D.; Morimoto, M. Suppression of Aedes Mosquito Larvae Using Dragonfly Larvae Released into Ovitraps (Diptera: Culicidae; Odonata: Libellulidae). Odonatologica 2021, 49, 67–84. [Google Scholar]
- Acquah-Lamptey, D.; Brandl, R. Effect of a Dragonfly (Bradinopyga Strachani Kirby, 1900) on the Density of Mosquito Larvae in a Field Experiment Using Mesocosms. Web Ecol. 2018, 18, 81–89. [Google Scholar] [CrossRef]
Predator Name | Mean Predator Length in mm (Range) | NCBI Accession No./Similarity Percentage (BLASTn) | Image |
---|---|---|---|
Pantala flavescens Order: Odonata Infraorder: Anisoptera Family: Libellulidae | 16.0 ± 1.2 (sd) (14.8–17.2) | OR342309/99% | |
Hydrobasileus croceus Order: Odonata Infraorder: Anisoptera Family: Libellulidae | 16.1 ± 0.9 (15.2–17.0) | OR336051/99% | |
Brachydiplax sobrina Order: Odonata Infraorder: Anisoptera Family: Libellulidae | 15.8 ± 1.0 (14.8–16.8) | OR336316/99% | |
Ceriagrion coromandelianum Order: Odonata Suborder: Zygoptera Family: Coenagrionidae | 16.5 ± 0.7 (15.8–17.2) | OR362797/99% | |
Paracercion hieroglyphicum Order: Odonata Suborder: Zygoptera Family: Coenagrionidae | 16.5 ± 0.6 (15.9–17.1) | OR512024/99% | |
Paracercion v-nigrum Order: Odonata Suborder: Zygoptera Family: Coenagrionidae | 16.3 ± 0.8 (15.5–17.1) | OR512029/98% |
Common Name | Species Name | 24 h | 48 h | 72 h | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FW | BW | FW | BW | FW | BW | ||||||||
PR | PI | PR | PI | PR | PI | PR | PI | PR | PI | PR | PI | ||
Dragonfly | Pantala flavescens | 68 ± 23 | 3 ± 1 | 65 ± 24 | 3 ± 1 | 85 ± 8 | 4 | 78 ± 20 | 3 ± 1 | 89 ± 8 | 4 | 84 ± 18 | 3 ± 1 |
Hydrobasileus croceus | 94 ± 2 | 4 | 95 ± 2 | 4 | 94 ± 2 | 4 | 93 ± 4 | 4 | 95 ± 2 | 4 | 94 ± 3 | 4 | |
Brachydiplax sobrina | 68 ± 23 | 3 ± 1 | 61 ± 21 | 3 ± 1 | 85 ± 8 | 4 | 74 ± 18 | 3 ± 1 | 89 ± 8 | 4 | 79 ± 15 | 3 ± 1 | |
Damselfly | Ceriagrion coromandelianum | 44 ± 23 | 2 ± 1 | 28 ± 12 | 1 | 41 ± 14 | 2 ± 1 | 45 ± 14 | 2 ± 1 | 57 ± 17 | 2 ± 1 | 57 ± 14 | 2 ± 1 |
Paracercion hieroglyphicum | 60 ± 23 | 3 ± 1 | 82 ± 8 | 3 | 60 ± 20 | 3 ± 1 | 72 ± 21 | 3 ± 1 | 72 ± 26 | 3 ± 1 | 76 ± 5 | 3 | |
Paracercion v-nigrum | 58 ± 26 | 2 ± 1 | 55 ± 20 | 2 ± 1 | 64 ± 17 | 3 ± 1 | 65 ± 21 | 3 ± 1 | 61 ± 18 | 3 ± 1 | 65 ± 25 | 3± 1 |
Common Name | Species Name | 24 h | 48 h | 72 h | ||||||
---|---|---|---|---|---|---|---|---|---|---|
FW | BW | p Value | FW | BW | p Value | FW | BW | p Value | ||
Dragonfly | Pantala flavescens | 20.6 ± 3.0 | 20.5 ± 2.1 | 0.45 | 22.2 ± 0.5 | 21.6 ± 1.5 | 0.08 | 22.4 ± 0.5 | 22.0 ± 1.2 | 0.16 |
Hydrobasileus croceus | 22.7 ± 0.1 | 22.8 ± 0.1 | 0.85 | 22.7 ± 0.1 | 22.7 ± 0.2 | 0.29 | 22.8 ± 0.1 | 22.7 ± 0.1 | 0.53 | |
Brachydiplax sobrina | 20.6 ± 3.0 | 20.2 ± 1.9 | 0.21 | 22.2 ± 0.5 | 21.4 ± 1.4 | 0.08 | 21.3 ± 2.4 | 21.9 ± 1.1 | 0.65 | |
Damselfly | Ceriagrion coromandelianum | 18.3 ± 2.7 | 16.2 ± 2.1 | 0.12 | 18.4 ± 1.6 | 18.9 ± 1.4 | 0.25 | 20.0 ± 1.6 | 20.1 ± 1.2 | 0.61 |
Paracercion hieroglyphicum | 20.0 ± 2.7 | 22.0 ± 0.5 | 0.07 | 20.2 ± 1.9 | 21.2 ± 1.6 | 0.12 | 21.0 ± 2.3 | 21.6 ± 0.4 | 0.38 | |
Paracercion v-nigrum | 19.8 ± 2.6 | 19.8 ± 1.9 | 0.75 | 20.6 ± 1.3 | 20.6 ± 2.0 | 0.86 | 20.3 ± 1.7 | 20.5 ± 2.2 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthiyan, S.; Eswaramohan, T.; Hemphill, A.; Surendran, S.N. Predatory Potential of Nymphal Odonates on Aedes aegypti Developing in Freshwater and Brackish Water Habitats. Insects 2024, 15, 547. https://doi.org/10.3390/insects15070547
Arthiyan S, Eswaramohan T, Hemphill A, Surendran SN. Predatory Potential of Nymphal Odonates on Aedes aegypti Developing in Freshwater and Brackish Water Habitats. Insects. 2024; 15(7):547. https://doi.org/10.3390/insects15070547
Chicago/Turabian StyleArthiyan, Sivasingham, Thampoe Eswaramohan, Andrew Hemphill, and Sinnathamby Noble Surendran. 2024. "Predatory Potential of Nymphal Odonates on Aedes aegypti Developing in Freshwater and Brackish Water Habitats" Insects 15, no. 7: 547. https://doi.org/10.3390/insects15070547
APA StyleArthiyan, S., Eswaramohan, T., Hemphill, A., & Surendran, S. N. (2024). Predatory Potential of Nymphal Odonates on Aedes aegypti Developing in Freshwater and Brackish Water Habitats. Insects, 15(7), 547. https://doi.org/10.3390/insects15070547