Patterns and Drivers of Bumblebee Diversity in Gansu
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Bumblebee Species
2.2. Statistical Analysis
2.3. Model Development and Assessment
3. Results
3.1. The Contribution of Environmental Factors in the Habitat Suitability of Bumblebee Species
3.2. Biogeographic Zones of Bumblebee Community Assemblage
3.3. Bumblebee Community Assemblage Explained by Environmental Heterogeneity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, P.H. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc. R. Soc. B 1996, 263, 579–588. [Google Scholar]
- Williams, P.H. Can biogeography help bumblebee conservation? Eur. J. Taxon. 2023, 890, 165–183. [Google Scholar] [CrossRef]
- Ernst, R.; Rödel, M.-O. Patterns of community composition in two tropical tree frog assemblages: Separating spatial structure and environmental effects in disturbed and undisturbed forests. J. Trop. Ecol. 2008, 24, 111–120. [Google Scholar] [CrossRef]
- Gardner, T.A.; Ribeiro-Júnior, M.A.; Barlow, J.O.S.; Ávila-Pires, T.C.S.; Hoogmoed, M.S.; Peres, C.A. The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conserv. Biol. 2007, 21, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.D. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 2003, 5, 159–178. [Google Scholar]
- Yu, D.W.; Wilson, H.B.; Pierce, N.E. An empirical model of species coexistence in a spatially structured environment. Ecology 2001, 82, 1761–1771. [Google Scholar] [CrossRef]
- Labidi, I.; Errouissi, F.; Nouira, S. Spatial and temporal variation in species composition, diversity, and structure of mediterranean dung beetle assemblages (Coleoptera: Scarabaeidae) across a bioclimatic gradient. Environ. Entomol. 2012, 41, 785–801. [Google Scholar] [CrossRef]
- Brown, C.; Burslem, D.; Illian, J.B.; Bao, L.; Brockelman, W.; Cao, M.; Chang, L.W.; Dattaraja, H.S.; Davies, S.; Gunatilleke, C.V.S. Multispecies coexistence of trees in tropical forests: Spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130502. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.H.; Osborne, J.L. Bumblebee vulnerability and conservation world-wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef]
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef]
- Butler, R.G.; Lage, C.; Dobrin, S.E.; Staples, J.K.; Venturini, E.; Frank, J.; Drummond, F.A. Maine’s Bumble bee (Hymenoptera: Apidae) assemblage—Part 1: Composition, seasonal and regional distribution, and resource use. Environ. Entomol. 2021, 50, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Christman, M.E.; Spears, L.R.; Strange, J.P.; Pearse, W.D.; Burchfield, E.K.; Ramirez, R.A. Land cover and climate drive shifts in Bombus assemblage composition. Agric. Ecosyst. Environ. 2022, 339, 108113. [Google Scholar] [CrossRef]
- Tommasi, N.; Pioltelli, E.; Biella, P.; Labra, M.; Casiraghi, M.; Galimberti, A. Effect of urbanization and its environmental stressors on the intraspecific variation of flight functional traits in two bumblebee species. Oecologia 2022, 199, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.H. An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull. Hist. Museum Entomol. Ser. 1998, 67, 79–152. [Google Scholar]
- Williams, P.H.; Huang, J.; An, J. Bear wasps of the middle kingdom: A decade of discovering China’s bumblebees. Antenna 2017, 41, 21–24. [Google Scholar]
- USDA. Forest Service Bumblebees (Bombus Spp.). Available online: https://www.fs.usda.gov/wildflowers/pollinators/pollinator-of-the-month/bumblebees.shtml (accessed on 11 April 2024).
- Williams, P. Habitat use by bumble bees (Bombus Spp.). Ecol. Entomol. 1988, 13, 223–237. [Google Scholar] [CrossRef]
- Williams, P.H.; Thorp, R.W.; Richardson, L.L.; Colla, S.R. Bumble Bees of North America: An Identification Guide; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 1400851181. [Google Scholar]
- Williams, P.H.; Bystriakova, N.; Huang, J.; Miao, Z.; An, J. Bumblebees, climate and glaciers across the Tibetan Plateau (Apidae: Bombus Latreille). Syst. Biodivers. 2015, 13, 164–181. [Google Scholar] [CrossRef]
- Orr, M.C.; Hughes, A.C.; Chesters, D.; Pickering, J.; Zhu, C.D.; Ascher, J.S. Global patterns and drivers of bee distribution. Curr. Biol. 2021, 31, 451–458. [Google Scholar] [CrossRef]
- An, J.; Williams, P.H.; Zhou, B.; Miao, Z.; Qi, W. The bumblebees of Gansu, Northwest China (Hymenoptera, Apidae). Zootaxa 2011, 2865, 1–36. [Google Scholar] [CrossRef]
- Panfilov, D.V. On the geographical distribution of bumblebees (Bombus) in China. Acta Geogr. Sin. 1957, 23, 221–239. [Google Scholar]
- Wang, S. Hymenoptera: Apidae-Bombus. In Insects of Xizang; Science Press: Beijing, China, 1982; pp. 427–447. [Google Scholar]
- Williams, P.; Tang, Y.; Yao, J.; Cameron, S. The Bumblebees of Sichuan (Hymenoptera: Apidae, Bombini). Syst. Biodivers. 2009, 7, 101–189. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 2010, 37, 2029–2053. [Google Scholar] [CrossRef]
- Huang, J.; An, J. Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodivers. Sci. 2018, 26, 486–497. [Google Scholar] [CrossRef]
- He, J.; Kreft, H.; Gao, E.; Wang, Z.; Jiang, H. Patterns and drivers of zoogeographical regions of terrestrial vertebrates in China. J. Biogeogr. 2017, 44, 1172–1184. [Google Scholar] [CrossRef]
- Miao, Y.F.; Herrman, M.; Wu, F.L.; Yan, X.L.; Yang, S.L. What controlled mid-late miocene long-term aridifi- cation in central asia? Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev. 2013, 112, 155–172. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community ecology package. R Package Version 2.5-6 2019. Community Ecol. 2020, 8, 732–740. [Google Scholar]
- Rahman, I.U.; Khan, N.; Ali, K. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana Forests of Swat. Sci. Nat. 2017, 104, 24. [Google Scholar] [CrossRef] [PubMed]
- Borcard, D.; Gillet, F.; Legendre, P.; Borcard, D.; Gillet, F.; Legendre, P. Canonical ordination. In Numerical Ecology with R; Springer: Cham, Switzerland, 2018; pp. 203–297. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0444538690. [Google Scholar]
- National Research Council; Division on Earth, Life Studies; Board on Life Sciences; Committee on the Status of Pollinators in North America. Status of Pollinators in North America; National Academies Press: Cambridge, MA, USA, 2007; ISBN 0309102898. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). FAO Global Information System on Water and Agriculture (Aquastat)—Evaporation. Available online: https://data.apps.fao.org/catalog/dataset/dce0415f-fd48-468f-a197-e4603dbf88dc/resource/be9143d9-034b-46c9-8b8d-b92f82110dc2?inner_span=True (accessed on 11 April 2024).
- Naeem, M.; Liu, M.; Huang, J.; Ding, G.; Potapov, G. Vulnerability of east asian bumblebee species to future climate and land cover changes. Agric. Ecosyst. Environ. 2019, 277, 11–20. [Google Scholar] [CrossRef]
- Williams, P.H.; An, J.; Dorji, P.; Huang, J.; Jaffar, S.; Japoshvili, G.; Narah, J.; Ren, Z.; Streinzer, M.; Thanoosing, C. Bumblebees with big teeth: Revising the subgenus alpigenobombus with the good, the bad and the ugly of numts (hymenoptera: Apidae). Eur. J. Taxon. 2023, 892, 1–65. [Google Scholar] [CrossRef]
- Willmer, P.G.; Stone, G.N. Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv. Study Behav. 2004, 34, 347–466. [Google Scholar]
- Ravi, S.; Kolomenskiy, D.; Engels, T.; Schneider, K.; Wang, C.; Sesterhenn, J.; Liu, H. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 2016, 6, 35043. [Google Scholar] [CrossRef]
- Donkersley, P. Trees for bees. Agric. Ecosyst. Environ. 2019, 270, 79–83. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. Temperature change characteristics in gansu province of China. Atmosphere 2022, 13, 728. [Google Scholar] [CrossRef]
- Naeem, M.; Huang, J.; Zhang, S.; Luo, S.; Liu, Y.; Zhang, H.; Luo, Q.; Zhou, Z.; Ding, G.; An, J. Diagnostic indicators of wild pollinators for biodiversity monitoring in long-term conservation. Sci. Total Environ. 2020, 708, 135231. [Google Scholar] [CrossRef]
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Global Map of Tree Density. 2016. Available online: https://figshare.com/articles/dataset/Global_map_of_tree_density/3179986 (accessed on 11 April 2024).
Sr. No | Species | Subgenus |
---|---|---|
1 | B. asiaticus | Sibiricobombus |
2 | B. atripes | Thoracobombus |
3 | B. bellardii | Psithyrus |
4 | B. bicoloratus | Megabombus |
5 | B. bohemicus | Psithyrus |
6 | B. breviceps | Alpigenobombus |
7 | B. campestris | Psithyrus |
8 | B. chinensis | Psithyrus |
9 | B. consobrinus | Megabombus |
10 | B. convexus | Mendacibombus |
11 | B. coreanus * | Psithyrus |
12 | B. cornutus | Psithyrus |
13 | B. czerskii * | Megabombus |
14 | B. deuteronymus | Thoracobombus |
15 | B. difficillimus | Subterraneobombus |
16 | B. expolitus * | Psithyrus |
17 | B. festivus | Melanobombus |
18 | B. filchnerae | Thoracobombus |
19 | B. flavescens | Pyrobombus |
20 | B. grahami | Alpigenobombus |
21 | B. hedini | Thoracobombus |
22 | B. humilis | Thoracobombus |
23 | B. hengduanensis | Pyrobombus |
24 | B. ignitus | Bombus |
25 | B. imitator * | Thoracobombus |
26 | B. impetuosus | Thoracobombus |
27 | B. infrequens * | Pyrobombus |
28 | B. kashmirensis | Alpigenobombus |
29 | B. qilianensis | Melanobombus |
30 | B. koreanus | Megabombus |
31 | B. ladakhensis * | Melanobombus |
32 | B. laesus | Thoracobombus |
33 | B. lantschouensis | Bombus |
34 | B. lemniscatus | Pyrobombus |
35 | B. lepidus | Pyrobombus |
36 | B. minshanicola | Bombus |
37 | B. longipes | Melanobombus |
38 | B. melanurus | Subterraneobombus |
39 | B. minshanensis | Bombus |
40 | B. norvegicus * | Psithyrus |
41 | B. opulentus | Thoracobombus |
42 | B. ganjsuensis | Bombus |
43 | B. personatus | Subterraneobombus |
44 | B. picipes | Pyrobombus |
45 | B. pyrosoma | Melanobombus |
46 | B. religious * | Megabombus |
47 | B. remotus | Thoracobombus |
48 | B. prshewalskyi | Melanobombus |
49 | B. rupestris * | Psithyrus |
50 | B. semenovi | Sibiricobombus |
51 | B. sibiricus | Sibiricobombus |
52 | B. sichelii | Melanobombus |
53 | B. skorikovi | Psithyrus |
54 | B. supremus | Megabombus |
55 | B. sushkini | Megabombus |
56 | B. tanguticus | Melanobombus |
57 | B. tibetanus | Psithyrus |
58 | B. trifasciatus | Megabombus |
59 | B. turneri * | Psithyrus |
60 | B. validus | Alpigenobombus |
61 | B. waltoni | Mendacibombus |
62 | B. wangae | Pyrobombus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Chen, H.; Li, W.; Hughes, A.C.; Williams, P.H.; Bashir, N.H.; Miao, Z.; Huang, J.; An, J. Patterns and Drivers of Bumblebee Diversity in Gansu. Insects 2024, 15, 552. https://doi.org/10.3390/insects15070552
Naeem M, Chen H, Li W, Hughes AC, Williams PH, Bashir NH, Miao Z, Huang J, An J. Patterns and Drivers of Bumblebee Diversity in Gansu. Insects. 2024; 15(7):552. https://doi.org/10.3390/insects15070552
Chicago/Turabian StyleNaeem, Muhammad, Huanhuan Chen, Wenbo Li, Alice C. Hughes, Paul H. Williams, Nawaz Haider Bashir, Zhengying Miao, Jiaxing Huang, and Jiandong An. 2024. "Patterns and Drivers of Bumblebee Diversity in Gansu" Insects 15, no. 7: 552. https://doi.org/10.3390/insects15070552
APA StyleNaeem, M., Chen, H., Li, W., Hughes, A. C., Williams, P. H., Bashir, N. H., Miao, Z., Huang, J., & An, J. (2024). Patterns and Drivers of Bumblebee Diversity in Gansu. Insects, 15(7), 552. https://doi.org/10.3390/insects15070552