Effect of Olive Fruit Volatiles on Landing, Egg Production, and Longevity of Bactrocera oleae Females under Different Temperatures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Stock Colony and Experimental Flies
2.2. Effect of Olive Fruit Volatiles on Females’ Landings on Olives under Different Temperatures
2.3. Effects of Olive Fruit Volatiles, under Different Temperatures, on Egg Production and Longevity
2.4. Statistical Analysis
3. Results
3.1. Effect of Olive Fruit Volatiles on the Number of Females’ Landings on Olives
3.2. Effect of Olive Fruit Volatiles on the Number of Eggs Laid in Olives
3.3. Effect of Olive Fruit Volatiles (VOCs) on Female Adult Longevity
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daane, K.M.; Johnson, M. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Tzanakakis, M.E. Insects and Mites Feeding on Olive; Brill Academic Publishers: Boston, MA, USA, 2006. [Google Scholar]
- Gucci, R.; Caruso, G.; Canale, A.; Loni, A.; Raspi, A.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M. Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). HortScience 2012, 47, 301–307. [Google Scholar] [CrossRef]
- Sacantanis, K. The scientific bases of a rational control of the olive fruit fly (Dacus oleae Gmel.). Geoponika 1957, 3, 219–225. [Google Scholar]
- Arambourg, Y.; Pralavorio, R. Survie hibernale de Dacus oleae Gmel. Ann. Zool. Ecol. Anim. 1970, 2, 659–662. [Google Scholar]
- Sigwalt, B.; Michelakis, S.; Alexandrakis, V. L’ hibernation de Dacus oleae Gmel. (Dipt. Tephritidae) a l’état de pupe. Ann. Zool. Ecol. Anim. 1977, 9, 287–297. [Google Scholar]
- Pappas, M.L.; Broufas, G.D.; Koufali, N.; Pieri, P.; Koveos, D.S. Effect of heat stress on survival and reproduction of the olive fruit fly Bactrocera (Dacus) oleae. J. Appl. Entomol. 2011, 135, 359–366. [Google Scholar] [CrossRef]
- Fletcher, B.S.; Pappas, S.; Kapatos, E. Changes in the ovaries of olive flies, Dacus oleae (Gmelin) during the summer, and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 1978, 3, 99–107. [Google Scholar] [CrossRef]
- Fletcher, B.S.; Kapatos, E. The influence of temperature, diet and olive fruits on maturation rates of female olive flies at different times of the year. Entomol. Exp. Appl. 1983, 33, 244–252. [Google Scholar] [CrossRef]
- Tzanakakis, M.E.; Koveos, D.S. Inhibition of ovarian maturation in the olive fruit fly, Dacus oleae (Diptera: Tephritidae), under long photophase and an increase of temperature. Ann. Entomol. Soc. Am. 1986, 79, 15–18. [Google Scholar] [CrossRef]
- Koveos, D.S.; Tzanakakis, M.E. Effect of the presence of olive fruit on ovarian maturation in the olive fruit fly, Dacus oleae, under laboratory conditions. Entomol. Exp. Appl. 1990, 55, 161–168. [Google Scholar] [CrossRef]
- Koveos, D.; Tzanakakis, M. Diapause aversion in the adult olive fruit fly through effects of the host fruit, bacteria, and adult diet. Ann. Entomol. Soc. Am. 1993, 86, 668–673. [Google Scholar] [CrossRef]
- Kokkari, A.I.; Pliakou, O.D.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Effect of fruit volatiles and light intensity on the reproduction of Bactrocera (Dacus) oleae. J. Appl. Entomol. 2017, 141, 841–847. [Google Scholar] [CrossRef]
- Gerofotis, C.D.; Ioannou, C.S.; Nakas, C.T.; Papadopoulos, N.T. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies. Sci. Rep. 2016, 6, 28540. [Google Scholar] [CrossRef] [PubMed]
- Kokkari, A.I.; Milonas, P.G.; Anastasaki, E.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Determination of volatile substances in olives and their effect on reproduction of the olive fruit fly. J. Appl. Entomol. 2021, 145, 841–855. [Google Scholar] [CrossRef]
- Burrack, H.J.; Zalom, F.G. Olive fruit fly, Bactrocera oleae (Gmel.) ovipositional preference and larval performance in several commercially important olive varieties in California. J. Econ. Entomol. 2008, 101, 750–758. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Olive volatiles from Portuguese Cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactrocera oleae (Rossi) (Diptera: Τephritidae). PLoS ONE 2015, 10, e0125070. [Google Scholar] [CrossRef]
- Gonçalves, M.F.; Malheiro, R.; Casal, S.; Torres, L.; Pereira, J.A. Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrançosa, Madural and Verdeal Transmontana). Sci. Hortic. 2012, 145, 127–135. [Google Scholar] [CrossRef]
- Koes, R.E.; Quattrocchio, F.; Mol, J.N.M. The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays 1994, 16, 123–132. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; van Loon, J.J.A.; Dicke, M. Insect–Plant Biology; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Jia, X.; Wang, W.K.; Chen, Z.H.; He, Y.H.; Liu, J.X. Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changes under atmospheric CO2 and cadmium-contaminated soils. Environ. Exp. Bot. 2014, 107, 134–143. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Jia, X.; Wang, W.K.; Liu, T.; Huang, S.P.; Yang, M.Y. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Sci. Total Environ. 2016, 565, 586–594. [Google Scholar] [CrossRef]
- Copolovici, L.; Niinemets, Ü. Environmental impacts on plant volatile emission. In Deciphering Chemical Language of Plant Communication; Blande, J.D., Glinwood, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 35–59. [Google Scholar]
- Kawano, T.; Kataoka, N.; Abe, S.; Ohtani, M.; Honda, Y.; Honda, S.; Kimura, Y. Lifespan extending activity of substances secreted by the nematode Caenorhabditis elegans that include the dauer-inducing pheromone. BioScience 2005, 69, 2479–2481. [Google Scholar] [CrossRef]
- Libert, S.; Pletcher, S.D. Modulation of longevity by environmental sensing. Cell 2007, 131, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kenyon, C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr. Biol. 2009, 19, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Poon, P.C.; Kuo, T.H.; Linford, N.J.; Roman, G.; Pletcher, S.D. Carbon dioxide sensing modulates lifespan and physiology in Drosophila. PLoS Biol. 2010, 8, e1000356. [Google Scholar] [CrossRef] [PubMed]
- Rocio, E.S.; Po-An, L.; Waterman, J.M.; Erb, M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat. Prod. Rep. 2023, 40, 840–866. [Google Scholar] [CrossRef]
- Clissold, F.J.; Simpson, S.J. Temperature, food quality and life history traits of herbivorous insects. Curr. Opin. Insect Sci. 2015, 11, 63–70. [Google Scholar] [CrossRef]
- De Lucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate change: Resetting plant–insect interactions. Plant Physiol. 2012, 160, 1677–1685. [Google Scholar] [CrossRef]
- Li, T.; Blande, J.D.; Holopainen, J.K. Atmospheric transformation of plant volatiles disrupts host plant finding. Sci. Rep. 2016, 6, 338–351. [Google Scholar] [CrossRef]
- Jamieson, M.A.; Burkle, L.A.; Manson, J.S.; Runyon, J.B.; Trowbridge, A.M.; Zientek, J. Global change effects on plant-insect interactions: The role of phytochemistry. Curr. Opin. Insect Sci. 2017, 23, 70–80. [Google Scholar] [CrossRef]
- Jamieson, M.A.; Trowbridge, A.M.; Raffa, K.F.; Lindroth, R.L. Consequences of climate warming and altered precipitation patterns for plant-insect multitrophic interactions. Plant Physiol. 2012, 160, 1719–1727. [Google Scholar] [CrossRef]
- Zvereva, E.L.; Kozlov, M.V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A meta-analysis. Glob. Chang. Biol. 2006, 12, 27–41. [Google Scholar] [CrossRef]
- Vickers, C.E.; Gershenzon, J.; Lerdau, M.T.; Loreto, F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 2009, 5, 283–291. [Google Scholar] [CrossRef]
- Konig, G.; Brunda, M.; Puxbaum, H.; Hewitt, C.N.; Duckham, S.C.; Rudolph, J. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant-species. Atmos. Environ. 1995, 29, 861–874. [Google Scholar] [CrossRef]
- Aros, D.; Gonzalez, V.; Allemann, R.K.; Mueller, C.T.; Rosati, C.; Rogers, H.J. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 2012, 63, 2739–2752. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Zimmerman, P.; Harley, P.; Monson, R.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analysis. J. Geophys. Res. 1993, 98, 609–617. [Google Scholar] [CrossRef]
- Shalk, J.M.; Kindler, S.D.; Manglitz, G.R. Temperature and the preference of the spotted alfalfa aphid for resistant and susceptible alfalfa plants (Theriopsis maculate: Hem., Hom., Aphididae). J. Econ. Entomol. 1969, 62, 1000–1003. [Google Scholar] [CrossRef]
- Cossins, A.R.; Bowler, K. Temperature Biology of Animals; Chapman & Hall: New York, NY, USA, 1987. [Google Scholar]
- Krebs, R.A.; Loeschke, V. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. Econ. Entomol. 1994, 7, 39–49. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sørensen, J.G.; Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 2003, 28, 175–216. [Google Scholar] [CrossRef]
- Baranov, N. Maslinova musica. Rev. Appli. Ent. 1937, 25, 536–537. [Google Scholar]
- Delrio, G.; Cavalloro, R. Reperti sul ciclo biologico esulla dinamica di popolazione del Dacus oleae Gmelin in Liguria. Redia 1977, 60, 221–253. [Google Scholar]
- McFadden, M.W.; Kapatos, E.; Pappas, S.; Carvounis, G. Ecological studies on the olive fly Dacus oleae Gmel. in Corfu. The yearly life cycle. Boll. Lab. Entomol. Agrar. Portici. 1977, 32, 44–50. [Google Scholar]
- Neuenschwander, P.; Michelakis, S. Determination of the lower thermal thresholds and day-degree requirements for eggs and larvae of Dacus oleae (Gmel.) (Diptera: Tephritidae) under field conditions in Crete, Greece. Mitt. Schweiz. Entomol. Ges. 1979, 52, 57–74. [Google Scholar]
- Stavrakis, G.N.; Fytizas, E. Observations sur l’ état des organes reproducteurs de melles de Dacus oleae (Diptera, Trypetidae), captureés en gobe-mouches pendant les anneés 1970–1980. Meded. Fac. Landbouwwet. 1980, 45, 587–592. [Google Scholar]
- Girolami, V.; Strapazzon, F.A.; de Verloni, P.F. Insect/plant relationships in olive flies: General aspects and new findings. In Fruit Flies of Economic Importance; Commission of European Communities/International Organization for Biological Control International Symposium: Athens, Greece, 1983; pp. 258–267. [Google Scholar]
- Raspi, A.; Iakono, E.; Canale, A. Variable photoperiod and presence of mature eggs in olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Redia 2002, 85, 111–119. [Google Scholar]
- Wang, X.G.; Johnson, M.W.; Daane, K.M.; Opp, S. Combined effects of heat stress and food supply on flight performance of olive fruit fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 102, 727–734. [Google Scholar] [CrossRef]
- Wang, X.G.; Johnson, M.W.; Daane, K.M.; Nadel, H. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environ. Entomol. 2009, 38, 1496–1504. [Google Scholar] [CrossRef]
- Ayoutantis, A.J.; Pelekassis, E.D.; Argyriou, L.C.; Mourikis, P.A.; Tsacas, L.E. Rapport sur les travaux esperimantaux de lutte contre le Dacus a Rovies (Eubee’) pendant l’anne´e 1953. Ann. Benaki Phytopathol. Inst. 1954, 8, 2–75. [Google Scholar]
- Mourikis, P.A.; Fytizas, E. Review of olive-fly ecology in relation to the sterile-male technique. In Sterile-Male Technique for Control of Fruit Flies, Proceedings of Symposium, Vienna, Austria, 1–5 September 1969; FAO/IAEA: Vienna, Austria, 1970; pp. 131–139. [Google Scholar]
- Scarpati, M.; Scalzo, R.; Vita, G. Olea europaea volatiles attractive and repellent to the olive fruit fly (Dacus oleae, Gmelin). J. Chem. Ecol. 1993, 19, 881–891. [Google Scholar] [CrossRef]
- Gerofotis, C.; Ioannou, C.; Papadopoulos, N. Aromatized to find mates: α-pinene aroma boosts the mating success of adult olive fruit flies. PLoS ONE 2013, 8, 813–836. [Google Scholar] [CrossRef]
- De Alfonso, I.; Vacas, S.; Primo, J. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). J. Agric. Food Chem. 2014, 62, 11976–11979. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Cunha, S.; Baptista, P.; Pereira, J. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochem. 2016, 121, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Schuh, G.; Heiden, A.C.; Hoffmann, T.; Kahl, J.; Rockel, P.; Rudolph, J.; Wildt, J. Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity. J. Atmos. Chem. 1997, 27, 291–318. [Google Scholar] [CrossRef]
- Tsiropoulos, G.J. Feeding and dietary requirements of the tephritid fruit flies. In Advances in Insect Rearing for Research and Pest Management; Anderson, T.E., Leppla, N.C., Eds.; Westview Press: Boulder, CO, USA, 1992; pp. 93–118. [Google Scholar]
- Jayanthi, P.D.K.; Kempraj, V.; Aurade, R.M.; Venkataramanappa, R.K.; Nandagopal, B.; Verghese, A.; Bruce, T.J.A. Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J. Chem. Ecol. 2014, 40, 259–266. [Google Scholar] [CrossRef]
- Katsoyannos, B.I.; Kouloussis, N.A. Captures of the olive fruit fly Bactrocera oleae on spheres of different colours. Entomol. Exp. Appl. 2001, 100, 165–172. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Pinheiro, L.; Baptista, P.; Pereira, J.A. Olive cultivar and maturation process on the oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Bull. Ent. Res. 2018, 109, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kombargi, W.S.; Michelakis, S.E.; Petrakis, C.A. Effect of olive surface waxes on oviposition by Bactrocera oleae (Diptera: Tephritidae). J. Econ. Entomol. 1998, 91, 993–998. [Google Scholar] [CrossRef]
- Jayanthi, P.D.K.; Woodcock, C.M.; Caulfield, J.; Birkett, M.A.; Bruce, T.J.A. Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis. J. Chem. Ecol. 2012, 38, 361–369. [Google Scholar] [CrossRef]
- Metcalf, R.L.; Mitchell, W.C.; Metcalf, E.R. Olfactory receptors in the melon fly Dacus cucurbitae and the oriental fruit fly Dacus dorsalis. Proc. Natl. Acad. Sci. USA 1983, 80, 3143–3147. [Google Scholar] [CrossRef]
- Rizzo, R.; Caleca, V. Resistance to the attack of Bactrocera oleae (Gmelin) of some Sicilian olive varieties. In Proceedings of the Olivebioteq Second International Seminar Biotechnology and Quality of Olive Tree Products Around the Mediterranean Basin, Marsala, Italy, 5–10 November 2006; pp. 291–298. [Google Scholar]
- Alyokhin, A.; Messing, R.H.; Duan, J.J. Visual and olfactory stimuli and fruit maturity affect trap captures of oriental fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 2000, 93, 644–649. [Google Scholar] [CrossRef]
- Jeong, D.E.; Artan, M.; Seo, K.; Lee, S.J. Regulation of lifespan by chemosensory and thermosensory systems: Findings in invertebrates and their implications in mammalian aging. Front. Genet. 2012, 3, 218. [Google Scholar] [CrossRef]
- Hansen, M.; Flatt, T.; Aguilaniu, H. Reproduction, fat metabolism, and life span: What is the connection? Cell Metab. 2013, 17, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Alcedo, J.; Flatt, T.; Pasyukova, E.G. Neuronal inputs and outputs of aging and longevity. Front. Genet. 2013, 4, 71. [Google Scholar] [CrossRef] [PubMed]
- Fielenbach, N.; Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008, 22, 2149–2165. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Uvaraov, B. Insects and Climate; The Entomological Society of London: London, UK, 1931. [Google Scholar]
- Showalter, T.D. Insect Ecology: An Ecosystem Approach; Academic Press: Burlington, ON, Canada, 2006. [Google Scholar]
- Kleist, E.; Mentel, T.F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler Scharr, A.; Rudich, Y.; Springe, M.; Tillmann, R.; Wildt, J. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 2012, 9, 5111–5123. [Google Scholar] [CrossRef]
- Pazouki, L.; Kanagendran, A.; Li, S.; Kännaste, A.; Rajabi Memari, H.; Bichele, R.; Niinemets, Ü. Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: From gene expression to emission responses. Environ. Exp. Bot. 2016, 132, 1–15. [Google Scholar] [CrossRef]
- Audit-Lamour, C.; Busson, D. Oogenesis defects in the ecd-1 mutant of Drosophila melanogaster, deficient in ecdysteroid at high temperature. J. Insect Physiol. 1981, 27, 829–837. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, R.; Zhou, W.; Pan, Y.; Tian, H.; Yin, Z.; Chen, W. Fruit fly in a challenging environment: Impact of short-term temperature stress on the survival, development, reproduction, and trehalose metabolism of Bactrocera dorsalis (Diptera: Tephritidae). Insects 2022, 13, 753–767. [Google Scholar] [CrossRef]
Chemicals | Number of Replicates (Ν) | Mean Number of Female Landings on Olive Fruits (±SE) | ||||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | ||||||||
15 | 17 | 20 | 25 | 30 | 33 | 35 | ||
Mixture 1 (5 μL) | 4 | 0.00 ± 0.00 a1A2 | 14.25 ± 0.48 aB | 37.25 ± 2.56 aC | 53.50 ± 2.21 aD | 76.50 ± 1.04 aE | 7.25 ± 1.10 aF | 0.00 ± 0.00 aA |
Mixture 2 (5 μL) | 4 | 0.00 ± 0.00 aA | 7.25 ± 0.25 bA | 15.00 ± 0.91 bB | 28.75 ± 1.03 bC | 43.50 ± 2.10 bD | 0.00 ± 0.00 bA | 0.00 ± 0.00 aA |
Mixture 3 (5 μL) | 4 | 0.00 ± 0.00 aA | 0.75 ± 0.25 cA | 3.50 ± 1.32 cA | 7.25 ± 0.62 cB | 34.50 ± 1.19 cC | 0.00 ± 0.00 bA | 0.00 ± 0.00 aA |
α-pinene (20 μL) | 4 | 0.00 ± 0.00 aA | 2.8 ± 0.85 cA | 26.25 ± 1.18 dB | 40.50 ± 0.86 dC | 59.00 ± 0.40 dD | 1.50 ± 0.64 bA | 0.00 ± 0.00 aA |
limonene (20 μL) | 4 | 0.00 ± 0.00 aA | 0.5 ± 0.28 cA | 2.00 ± 0.70 cA | 2.25 ± 0.25 eA | 24.75 ± 1.65 eB | 0.00 ± 0.00 bA | 0.00 ± 0.00 aA |
Control (5 μL) | 4 | 0.00 ± 0.00 aA | 1.00 ± 0.00 cA | 18.75 ± 2.25 bC | 25.75 ± 1.31 bD | 54.00 ± 1.08 dE | 0.00 ± 0.00 bA | 0.00 ± 0.00 aA |
Control (20 μL) | 4 | 0.00 ± 0.00 aA | 1.00 ± 0.00 cA | 18.00 ± 1.50 bB | 24.00 ± 1.31 bD | 53.00 ± 0.40 dE | 0.00 ± 0.00 bA | 0.00 ± 0.00 aA |
Chemicals | Number of Replicates (Ν) | Mean (±SE) Total Number of Eggs/10 Females during Adult Life | ||||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | ||||||||
15 | 17 | 20 | 25 | 30 | 33 | 35 | ||
Mixture 1 of VOCs (5 μL) | 4 | 0.00 ± 0.00 a1A2 | 113.50 ± 3.37 aB | 604.00 ± 6.02 aC | 632.75 ± 15.22 aD | 1348.50 ± 8.99 aE | 276.00 ± 7.47 aF | 0.00 ± 0.00 aA |
Control (5 μL) | 4 | 0.00 ± 0.00 aA | 37.75 ± 1.25 bΒ | 322.50 ± 5.54 bC | 363.00 ± 4.14 bD | 999.75 ± 7.28 bE | 188.5.00 ± 4.83 bF | 0.00 ± 0.00 aA |
Limonene (20 μL) | 4 | 0.00 ± 0.00 aA | 0.00 ± 0.00 cB | 0.00 ± 0.00 cC | 78.50 ± 1.04 cD | 102.75 ± 8.67 cE | 8.75 ± 1.25 cF | 0.00 ± 0.00 aA |
Control (20 μL) | 4 | 0.00 ± 0.00 aA | 35.75 ± 1.43 bB | 320.75 ± 4.55 bC | 360.75 ± 1.43 bD | 994.75 ± 13.00 bE | 181.25 ± 2.09 bF | 0.00 ± 0.00 aA |
Chemicals | Number of Replicates (Ν) | Mean Longevity (Days ± SE) | ||||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | ||||||||
15 | 17 | 20 | 25 | 30 | 33 | 35 | ||
Mixture of VOCs (5 μL) | 4 | 68.50 ± 0.50 a1A2 | 65.00 ± 0.58 aA | 61.50 ± 1.41 aB | 55.25 ± 0.48 aC | 52.50 ± 0.50 aC | 48.50 ± 0.50 aD | 11.50 ± 0.96 aE |
Control (5 μL) | 4 | 69.00 ± 0.58 aA | 65.50 ± 1.26 aB | 63.00 ± 0.50 aB | 60.00 ± 0.71 bC | 56.50 ± 0.96 bD | 52.50 ± 0.96 bE | 15.00 ± 1.73 aF |
Limonene (20 μL) | 4 | 55.50 ± 1.26 bA | 44.00 ± 1.41 bB | 44.00 ± 0.96 bB | 29.25 ± 0.48 cC | 27.00 ± 0.58 cD | 22.50 ± 0.96 cE | 13.00 ± 0.58 bF |
Control (20 μL) | 4 | 68.50 ± 0.96 aA | 68.50 ± 0.50 aA | 63.50 ± 1.00 aA | 59.75 ± 0.85 bB | 55.50 ± 0.96 bC | 52.00 ± 0.82 bC | 17.50 ± 0.50 aD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkari, A.; Kouloussis, N.A.; Floros, G.; Koveos, D.S. Effect of Olive Fruit Volatiles on Landing, Egg Production, and Longevity of Bactrocera oleae Females under Different Temperatures. Insects 2024, 15, 728. https://doi.org/10.3390/insects15090728
Kokkari A, Kouloussis NA, Floros G, Koveos DS. Effect of Olive Fruit Volatiles on Landing, Egg Production, and Longevity of Bactrocera oleae Females under Different Temperatures. Insects. 2024; 15(9):728. https://doi.org/10.3390/insects15090728
Chicago/Turabian StyleKokkari, Anastasia, Nikos A. Kouloussis, George Floros, and Dimitrios S. Koveos. 2024. "Effect of Olive Fruit Volatiles on Landing, Egg Production, and Longevity of Bactrocera oleae Females under Different Temperatures" Insects 15, no. 9: 728. https://doi.org/10.3390/insects15090728
APA StyleKokkari, A., Kouloussis, N. A., Floros, G., & Koveos, D. S. (2024). Effect of Olive Fruit Volatiles on Landing, Egg Production, and Longevity of Bactrocera oleae Females under Different Temperatures. Insects, 15(9), 728. https://doi.org/10.3390/insects15090728