Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Rearing
2.2. Sample Preparation
2.3. Re-Analysis of Gas Chromatography/Mass Spectrometry (GC–MS) Data
2.4. Composition Analysis
2.5. Arm-in-Cage Assay
2.6. Ethics Declaration
2.7. Statistical Analyses
3. Results
3.1. GC–MS Analysis of Plant-Based Oils
3.1.1. Chemical Composition of Oils
3.1.2. Repellency Profiling and Chemical Class Composition of Oils
3.2. Repellency Efficacy of Plant-Based Oil Dilutions
3.3. Mosquito Repellent Efficacy of Different Mixtures of Oils
3.4. Mosquito Repellency Assessment of Major Clove and Cinnamon Oil Constituents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chala, B.; Hamde, F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020, 543, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Tuells, J.; Henao-Martínez, A.F.; Franco-Paredes, C. Yellow Fever: A Perennial Threat. Arch. Med. Res. 2022, 53, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Hay, S.I. The Global Expansion of Dengue: How Aedes aegypti Mosquitoes Enabled the First Pandemic Arbovirus. Annu. Rev. Entomol. 2020, 65, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Burt, F.J.; Chen, W.; Miner, J.J.; Lenschow, D.J.; Merits, A.; Schnettler, E.; Kohl, A.; Rudd, P.A.; Taylor, A.; Herrero, L.J.; et al. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 2017, 17, e107–e117. [Google Scholar] [CrossRef]
- Laporta, G.Z.; Potter, A.M.; Oliveira, J.F.A.; Bourke, B.P.; Pecor, D.B.; Linton, Y.M. Global Distribution of Aedes aegypti and Aedes albopictus in a Climate Change Scenario of Regional Rivalry. Insects 2023, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.T.; Ant, T.H.; Cameron, M.M.; Logan, J.G. Novel control strategies for mosquito-borne diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20190802. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Paluch, G.; Bartholomay, L.; Coats, J. Mosquito repellents: A review of chemical structure diversity and olfaction. Pest. Manag. Sci. 2010, 66, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Debboun, M.; Strickman, D. Insect repellents and associated personal protection for a reduction in human disease. Med. Vet. Entomol. 2013, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.; Betz, J.F.; Riabinina, O.; Lahondère, C.; Potter, C.J. Commonly Used Insect Repellents Hide Human Odors from Anopheles Mosquitoes. Curr. Biol. 2019, 29, 3669–3680. [Google Scholar] [CrossRef] [PubMed]
- Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, A.; Khoobdel, M.; Zahraei-Ramazani, A.; Azarmi, S.; Mosawi, S.H. Effectiveness of plant-based repellents against different Anopheles species: A systematic review. Malar. J. 2019, 18, 436. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.L.; Scott, M.A.; Rodriguez, S.D.; Mitra, S.; Vulcan, J.; Cordova, J.J.; Chung, H.-N.; de Souza, D.L.L.; Gonzales, K.K.; Hansen, I.A. An online survey of personal mosquito-repellent strategies. PeerJ 2018, 6, e5151. [Google Scholar]
- Bohbot, J.D.; Fu, L.; Le, T.C.; Chauhan, K.R.; Cantrell, C.L.; Dickens, J.C. Multiple activities of insect repellents on odorant receptors in mosquitoes. Med. Vet. Entomol. 2011, 25, 436–444. [Google Scholar] [CrossRef]
- Bohbot, J.D.; Sparks, J.T.; Dickens, J.C. The maxillary palp of Aedes aegypti, a model of multisensory integration. Insect Biochem. Mol. Biol. 2014, 48, 29–39. [Google Scholar] [CrossRef]
- Sparks, J.T.; Bohbot, J.D.; Dickens, J.C. The genetics of chemoreception in the labella and tarsi of Aedes aegypti. Insect Biochem. Mol. Biol. 2014, 48, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zwiebel, L.J.; Takken, W. Olfactory regulation of mosquito-host interactions. Insect Biochem. Mol. Biol. 2004, 34, 645–652. [Google Scholar] [CrossRef]
- Acree, F., Jr.; Turner, R.B.; Gouck, H.K.; Beroza, M.; Smith, N. L-Lactic acid: A mosquito attractant isolated from humans. Science 1968, 161, 1346–1347. [Google Scholar] [CrossRef]
- Sparks, J.T.; Vinyard, B.T.; Dickens, J.C. Gustatory receptor expression in the labella and tarsi of Aedes aegypti. Insect Biochem. Mol. Biol. 2013, 43, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Dagar, P.; Ramakrishna, W. Plant based and synthetic products as mosquito repellents: Effects, target sites and their mechanism of action on mosquitoes. Int. J. Trop. Insect Sci. 2024, 44, 1509–1530. [Google Scholar]
- Baker, B.P.; Grant, J.A. Active Ingredients Eligible for Minimum Risk Pesticide Use: Overview of the Profiles; Integrated Pest Management Program Cornell Cooperative Extension: New York, NY, USA, 2018. [Google Scholar]
- da Silva, M.R.M.; Ricci-Júnior, E. An approach to natural insect repellent formulations: From basic research to technological development. Acta Trop. 2020, 212, 105419. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Y.; Feng, Y.; Ren, X.; Li, Y.; Li, W.; Huang, J.; Kong, L.; Chen, X.; Lin, Z.; et al. Study of the Repellent Activity of 60 Essential Oils and Their Main Constituents against Aedes albopictus, and Nano-Formulation Development. Insects 2022, 13, 1077. [Google Scholar] [CrossRef] [PubMed]
- Esmaili, F.; Sanei-Dehkordi, A.; Amoozegar, F.; Osanloo, M. A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Res. Appl. Chem. 2021, 11, 12516–12529. [Google Scholar]
- Tan, K.; Faierstein, G.B.; Xu, P.; Barbosa, R.M.; Buss, G.K.; Leal, W.S. A popular Indian clove-based mosquito repellent is less effective against Culex quinquefasciatus and Aedes aegypti than DEET. PLoS ONE 2019, 14, e0224810. [Google Scholar] [CrossRef]
- Miot, H.A.; Lauterbach, G.d.P.; Ribeiro, F.A.H.; Favero Júnior, É.L.; Hercos, G.N.; Madeira, N.G.; Haddad Junior, V. Comparison among homemade repellents made with cloves, picaridin, andiroba, and soybean oil against Aedes aegypti bites. Rev. Da Soc. Bras. De Med. Trop. 2011, 44, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zeng, X.; O’neal, M.; Schultz, G.; Tucker, B.; Coats, J.; Bartholomay, L.; Xue, R.-D. Mosquito larvicidal activity of botanical-based mosquito repellents. J. Am. Mosq. Control Assoc. 2008, 24, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nakasen, K.; Wongsrila, A.; Prathumtet, J.; Sriraj, P.; Boonmars, T.; Promsrisuk, T.; Laikaew, N.; Aukkanimart, R. Bio efficacy of Cinnamaldehyde from Cinnamomum verum essential oil against Culex quinquefasciatus (Diptera: Culicidae). J. Entomol. Acarol. Res. 2021, 53. [Google Scholar] [CrossRef]
- Uniyal, A.; Tikar, S.; Singh, R.; Shukla, S.V.; Agrawal, O.; Veer, V.; Sukumaran, D. Repellent effect, knockdown study and electrophysiological responses of essential oils against Aedes aegypti. J. Entomol. Zool. Stud. 2014, 2, 351–357. [Google Scholar]
- Müller, G.C.; Junnila, A.; Butler, J.; Kravchenko, V.D.; Revay, E.E.; Weiss, R.W.; Schlein, Y. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J. Vector Ecol. 2009, 34, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Kravchenko, V.D.; Revay, E.E.; Butler, J.; Schlein, Y. Indoor Protection Against Mosquito and Sand Fly Bites: A Comparison Between Citronella, Linalool, and Geraniol Candles. J. Am. Mosq. Control Assoc. 2008, 24, 150–153. [Google Scholar] [CrossRef]
- Hao, H.; Wei, J.; Dai, J.; Du, J. Host-Seeking and Blood-Feeding Behavior of Aedes albopictus (Diptera: Culicidae) Exposed to Vapors of Geraniol, Citral, Citronellal, Eugenol, or Anisaldehyde. J. Med. Entomol. 2014, 45, 533–539. [Google Scholar] [CrossRef]
- Barnard, D.R. Repellency of Essential Oils to Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 1999, 36, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Luker, H.A.; Salas, K.R.; Esmaeili, D.; Holguin, F.O.; Bendzus-Mendoza, H.; Hansen, I.A. Repellent efficacy of 20 essential oils on Aedes aegypti mosquitoes and Ixodes scapularis ticks in contact-repellency assays. Sci. Rep. 2023, 13, 1705. [Google Scholar] [CrossRef]
- Environmental Protection Agency. OPPTS 810.3700: Insect Repellents to be Applied to Human Skin; Environmental Protection Agency: Washington, DC, USA, 2010.
- Luker, H.A. A critical review of current laboratory methods used to evaluate mosquito repellents. Front. Insect Sci. 2024, 4, 1320138. [Google Scholar] [CrossRef]
- Scientific Advisory Panel (SAP). Insect Repellents for Human Skin and Outdoor Premises.|US EPA ARCHIVE DOCUMENT; Scientific Advisory Panel: Washington, DC, USA, 2015.
- Ruof, M.C. Vulnerability, vulnerable populations, and policy. Kennedy Inst. Ethics J. 2004, 14, 411–425. [Google Scholar] [CrossRef]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Miller, R.G., Jr. Beyond ANOVA: Basics of Applied Statistics; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Dunnett, C.W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- Shaukat, M.A.; Ali, S.; Saddiq, B.; Hassan, M.W.; Ahmad, A.; Kamran, M. Effective mechanisms to control mosquito borne diseases: A review. Am. J. Clin. Neurol. Neurosurg. 2019, 4, 21–30. [Google Scholar]
- Eslahi, H.; Fahimi, N.; Sardarian, A.R. Chemical composition of essential oils. In Essential Oils in Food Processing: Chemistry, Safety and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 119–171. [Google Scholar]
- Khan, S.; Sahar, A.; Tariq, T.; Sameen, A.; Tariq, F. Essential oils in plants: Plant physiology, the chemical composition of the oil, and natural variation of the oils (chemotaxonomy and environmental effects, etc.). In Essential Oils; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–36. [Google Scholar]
- Voon, H.C.; Bhat, R.; Rusul, G. Flower extracts and their essential oils as potential antimicrobial agents for food uses and pharmaceutical applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 34–55. [Google Scholar] [CrossRef]
- Reddy, D.N. Essential oils extracted from medicinal plants and their applications. In Natural Bio-Active Compounds: Volume 1: Production and Applications; Springer: Singapore, 2019; pp. 237–283. [Google Scholar]
- Mejri, J.; Abderrabba, M.; Mejri, M. Chemical composition of the essential oil of Ruta chalepensis L: Influence of drying, hydro-distillation duration and plant parts. Ind. Crops Prod. 2010, 32, 671–673. [Google Scholar] [CrossRef]
- Perry, N.B.; Anderson, R.E.; Brennan, N.J.; Douglas, M.H.; Heaney, A.J.; McGimpsey, J.A.; Smallfield, B.M. Essential oils from Dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem. 1999, 47, 2048–2054. [Google Scholar] [CrossRef]
- Budiarto, R.; Sholikin, M.M. Kaffir lime essential oil variation in the last fifty years: A meta-analysis of plant origins, plant parts and extraction methods. Horticulturae 2022, 8, 1132. [Google Scholar] [CrossRef]
- Nagar, S.; Pigott, M.; Whyms, S.; Berlemont, A.; Sheridan, H. Effect of Extraction Methods on Essential Oil Composition: A Case Study of Irish Bog Myrtle-Myrica gale L. Separations 2023, 10, 128. [Google Scholar] [CrossRef]
- Li, Y.-q.; Kong, D.-x.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Yu, T.; Yao, H.; Qi, S.; Wang, J. GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas Y Aceites 2020, 71, e372. [Google Scholar] [CrossRef]
- Tambe, E.; Gotmare, S. Qualitative estimation of chemical composition of five different clove oils (Syzygium aromaticum) by GCMS. Int. J. Multidiscip. Educ. Res. 2020, 9, 5. [Google Scholar]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011, 10, S11. [Google Scholar] [CrossRef] [PubMed]
- Iovinella, I.; Caputo, B.; Cobre, P.; Manica, M.; Mandoli, A.; Dani, F.R. Advances in mosquito repellents: Effectiveness of citronellal derivatives in laboratory and field trials. Pest. Manag. Sci. 2022, 78, 5106–5112. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Rahmi, D.; Yunilawati, R.; Jati, B.N.; Setiawati, I.; Riyanto, A.; Batubara, I.; Astuti, R.I. Antiaging and Skin Irritation Potential of Four Main Indonesian Essential Oils. Cosmetics 2021, 8, 94. [Google Scholar] [CrossRef]
- Deng, W.; Li, M.; Liu, S.; Logan, J.G.; Mo, J. Repellent Screening of Selected Plant Essential Oils Against Dengue Fever Mosquitoes Using Behavior Bioassays. Neotrop. Entomol. 2023, 52, 521–529. [Google Scholar] [CrossRef]
- Noosidum, A.; Chareonviriyaphap, T.; Chandrapatya, A. Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes. J. Vector Ecol. 2014, 39, 298–305. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santana, A.; Baldin, E.L.L.; dos Santos, T.L.B.; Baptista, Y.A.; dos Santos, M.C.; Lima, A.P.S.; Tanajura, L.S.; Vieira, T.M.; Crotti, A.E.M. Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 2022, 153, 105882. [Google Scholar] [CrossRef]
- Aboelhadid, S.M.; Abdel-Tawab, H.; Mahran, H.A.; Daferera, D.; Sokmen, A.; Al-Quraishy, S.; Abdel-Baki, A.-A.S. Synergistic larvicidal and repellent effects of essential oils of three Origanum species on Rhipicephalus annulatus tick. Exp. Appl. Acarol. 2022, 87, 273–287. [Google Scholar] [CrossRef]
- Baker, A.; Lin, C.C.; Lett, C.; Karpinska, B.; Wright, M.H.; Foyer, C.H. Catalase: A critical node in the regulation of cell fate. Free Radic. Biol. Med. 2023, 199, 56–66. [Google Scholar] [CrossRef]
- Silva, R.C.E.; Costa, J.S.D.; Figueiredo, R.O.; Setzer, W.N.; Silva, J.; Maia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef]
- Jesus, I.; Miranda, F.; Campos, D.; Cid, Y. Development of Spray Formulations Containing Eugenol and Carvacrol for Flea and Tick Control. 2022. Available online: https://electronicconferencegppharmacy.uff.br/wp-content/uploads/sites/463/2022/11/Desenvolvimento-6.pdf (accessed on 17 September 2024).
Common Name | Millipore Sigma Number | CAS Number |
---|---|---|
Cinnamon oil (Ceylon Type) (Cinnamomum verum (Presl, 1823)) | W229202 | 8015-91-6 |
Clove oil (Syzygium aromaticum (L.) Merr, L.M. Perry, 1939) | C8392 | 8000-34-8 |
Eugenol | W246719 | 97530 |
Eugenyl Acetate (Chavibetol acetate) | W246905 | 93-28-7 |
Geraniol | 163333 | 106-24-1 |
2-Phenylethyl propionate (2PEP) | W286702 | 122-70-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, A.D.; Whyms, S.; Luker, H.A.; Galvan, C.J.; Holguin, F.O.; Hansen, I.A. Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes. Insects 2025, 16, 51. https://doi.org/10.3390/insects16010051
Lopez AD, Whyms S, Luker HA, Galvan CJ, Holguin FO, Hansen IA. Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes. Insects. 2025; 16(1):51. https://doi.org/10.3390/insects16010051
Chicago/Turabian StyleLopez, April D., Sophie Whyms, Hailey A. Luker, Claudia J. Galvan, F. Omar Holguin, and Immo A. Hansen. 2025. "Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes" Insects 16, no. 1: 51. https://doi.org/10.3390/insects16010051
APA StyleLopez, A. D., Whyms, S., Luker, H. A., Galvan, C. J., Holguin, F. O., & Hansen, I. A. (2025). Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes. Insects, 16(1), 51. https://doi.org/10.3390/insects16010051