Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Age-Related Changes
- The percentage of blackened host eggs with dead individuals among the total number of blackened host eggs.
- The absolute number of diapausing individuals per one card (i.e., per one female of the maternal generation).
- The absolute number of non-diapausing individuals per one card (i.e., per one female of the maternal generation).
- The percentage of diapause (when this parameter was calculated, dead individuals were excluded).
2.3. The Effect of the Shock Duration
2.4. Statistical Analysis
3. Results
3.1. Age-Related Dynamics
3.1.1. Cold Shock
3.1.2. Heat Shock
3.2. The Effect of the Shock Duration
3.2.1. Cold Shock
3.2.2. Heat Shock
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tauber, M.J.; Tauber, C.A.; Masaki, S. Seasonal Adaptations of Insects; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Danks, H.V. Insect Dormancy: An Ecological Perspective; Biological Survey of Canada: Ottava, ON, Canada, 1987. [Google Scholar]
- Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006, 52, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, K. Diapause research in insects: Historical review and recent work perspectives. Entomol. Exp. Appl. 2019, 167, 27–36. [Google Scholar] [CrossRef]
- Denlinger, D.L. Insect Diapause; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Denlinger, D.L. Insect diapause: From a rich history to an exciting future. J. Exp. Biol. 2023, 226, jeb245329. [Google Scholar] [CrossRef] [PubMed]
- Adamo, S.A. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects. Horm. Behav. 2017, 88, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Wojda, I. Temperature stress and insect immunity. J. Therm. Biol. 2017, 68, 96–103. [Google Scholar] [CrossRef]
- Cinel, S.D.; Hahn, D.A.; Kawahara, A.Y. Predator-induced stress responses in insects: A review. J. Insect Physiol. 2020, 122, 104039. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.; Sucena, É.; Koyama, T. Endocrine regulation of immunity in insects. FEBS J. 2021, 288, 3928–3947. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, D.L.; Rinehart, J.P.; Yocum, G.D. Stress proteins: A role in insect diapause? In Insect Timing: Circadian Rhythmicity to Seasonality; Denlinger, D.L., Giebultowicz, J., Saunders, D.S., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 155–171. [Google Scholar]
- Denlinger, D.L. Exploiting tools for manipulating insect diapause. Bull. Entomol. Res. 2022, 112, 715–723. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; MacRae, T.H. Insect heat shock proteins during stress and diapause. Ann. Rev. Entomol. 2015, 60, 59–75. [Google Scholar] [CrossRef]
- Popović, Ž.D.; Subotić, A.; Nikolić, T.V.; Radojičić, R.; Blagojević, D.P.; Grubor-Lajšić, G.; Koštál, V. Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comp. Biochem. Physiol. B 2015, 186, 1–7. [Google Scholar] [CrossRef]
- Cheng, W.; Li, D.; Wang, Y.; Liu, Y.; Zhu-Salzman, K. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. J. Insect Physiol. 2016, 95, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Miano, F.N.; Jiang, T.; Peng, Y.; Zhang, W.; Xiao, H. Characterization of three heat shock protein genes in Pieris melete and their expression patterns in response to temperature stress and pupal diapause. Insects 2022, 13, 430. [Google Scholar] [CrossRef]
- Aruda, A.M.; Baumgartner, M.F.; Reitzel, A.M.; Tarrant, A.M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 2011, 57, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M. Biological control with Trichogramma: Advances, successes, and potential of their use. Ann. Rev. Entomol. 1996, 41, 375–406. [Google Scholar] [CrossRef]
- Zaslavski, V.A.; Umarova, T.Y. Environmental and endogenous control of diapause in Trichogramma species. Entomophaga 1990, 35, 23–29. [Google Scholar] [CrossRef]
- Reznik, S.Y. Ecological and evolutionary aspects of photothermal regulation of diapause in Trichogrammatidae. J. Evol. Biochem. Physiol. 2011, 47, 512–523. [Google Scholar] [CrossRef]
- Reznik, S.Y.; Voinovich, N.D. Restricted diet prevents the induction of diapause in Trichogramma larvae. Biol. Control 2023, 183, 105262. [Google Scholar] [CrossRef]
- Reznik, S.Y.; Voinovich, N.D. Photoperiod-independent diapause-inducing thermal response of Trichogramma larvae: Pattern and mechanisms. J. Appl. Entomol. 2022, 146, 586–595. [Google Scholar] [CrossRef]
- Reznik, S.Y.; Vaghina, N.P.; Voinovich, N.D. 2008. Diapause induction in Trichogramma embryophagum Htg. (Hym., Trichogrammatidae): The dynamics of thermosensitivity. J. Appl. Entomol. 2008, 132, 502–509. [Google Scholar] [CrossRef]
- Denlinger, D.L. Preventing insect diapause with hormones and cholera toxin. Life Sci. 1976, 19, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, D.L.; Giebultowicz, J.; Adedokun, T. Insect diapause: Dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology; Sehnal, F., Zabza, A., Denlinger, D.L., Eds.; Wroclaw Technical University Press: Wroclaw, Poland, 1988; pp. 309–324. [Google Scholar]
- Fukumoto, E.; Numata, H.; Shiga, S. Effects of temperature of adults and eggs on the induction of embryonic diapause in the band-legged ground cricket, Dianemobius nigrofasciatus. Physiol. Entomol. 2006, 31, 211–217. [Google Scholar] [CrossRef]
- Abatzopoulos, T.; Triantaphyllidis, G.; Sorgeloos, P.; Clegg, J.S. Evidence for the induction of cyst diapause by heat-shock in Artemia. J. Crustac. Biol. 1994, 14, 226–230. [Google Scholar] [CrossRef]
- Browning, T.O. Timing of the action of photoperiod and temperature on events leading to diapause and development in pupae of Heliothis punctigera (Lepidoptera: Noctuidae). J. Exp. Biol. 1979, 83, 261–269. [Google Scholar] [CrossRef]
- Saunders, D.S.; Steel, C.G.H.; Vafopoulou, X.; Lewis, R.D. Insect Clocks; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Saunders, D.S. Insect photoperiodism: Effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomol. Sci. 2014, 17, 25–40. [Google Scholar] [CrossRef]
- Colinet, H.; Muratori, F.; Hance, T. Cold-induced expression of diapause in Praon volucre: Fitness cost and morpho-physiological characterization. Physiol. Entomol. 2010, 35, 301–307. [Google Scholar] [CrossRef]
- Reznik, S.Y.; Samartsev, K.G. Multigenerational maternal inhibition of prepupal diapause in two Trichogramma species (Hymenoptera: Trichogrammatidae). J. Insect Physiol. 2015, 81, 14–20. [Google Scholar] [CrossRef]
- Voinovich, N.D.; Reznik, S.Y. On the factors inducing the inhibition of diapause in the progeny of diapause females of Trichogramma telengai. Physiol. Entomol. 2017, 42, 274–281. [Google Scholar] [CrossRef]
- Mahroof, R.; Zhu, K.Y.; Subramanyam, B. Changes in expression of heat shock proteins in Tribolium castaneum (Coleoptera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Ann. Entomol. Soc. Am. 2005, 98, 100–107. [Google Scholar] [CrossRef]
- Chen, N.; Tan, J.Y.; Wang, Y.; Qi, M.H.; Peng, J.N.; Chen, D.X.; Liu, S.; Li, M.Y. A heat shock protein 70 protects the green peach aphid (Myzus persicae) against high-temperature stress. J. Asia-Pac. Entomol. 2022, 25, 101992. [Google Scholar] [CrossRef]
- Muluvhahothe, M.M.; Joubert, E.; Foord, S.H. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults. J. Therm. Biol. 2023, 111, 103395. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Zhu, F.; Lu, M.X.; Du, Y.Z. Molecular characterization of heat-induced HSP11.0 and master-regulator HSF from Cotesia chilonis and their consistent response to heat stress. Insects 2021, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Joplin, K.H.; Yocum, G.D.; Denlinger, D.L. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 1990, 36, 825–834. [Google Scholar] [CrossRef]
- Yocum, G.D.; Žďárek, J.; Joplin, K.H.; Lee, R.E.; Smith, D.C.; Manter, K.D.; Denlinger, D.L. Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol. 1994, 40, 13–21. [Google Scholar] [CrossRef]
- Tao, Y.D.; Liu, Y.; Wan, X.S.; Xu, J.; Fu, D.Y.; Zhang, J.Z. High and low temperatures differentially affect survival, reproduction, and gene transcription in male and female moths of Spodoptera frugiperda. Insects 2023, 14, 958. [Google Scholar] [CrossRef]
- Tanaka, Y.; Matsukura, K. Quantitative effects of temperature and exposure duration on the occurrence and repair of indirect chilling injury in the fall armyworm Spodoptera frugiperda. Insects 2023, 14, 356. [Google Scholar] [CrossRef] [PubMed]
- Sakka, M.K.; Gourgouta, M.; Athanassiou, C.G. Efficacy of extreme temperatures on all life stages of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Agron 2024, 14, 1307. [Google Scholar] [CrossRef]
- Mironidis, G.K.; Savopoulou-Soultani, M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. J. Therm. Biol. 2010, 35, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Shi, L.; Lu, M.X.; Wang, J.J.; Du, Y.Z. Thermal tolerance of Frankliniella occidentalis: Effects of temperature, exposure time, and gender. J. Therm. Biol. 2011, 36, 437–442. [Google Scholar] [CrossRef]
- Yao, F.L.; Zheng, Y.; Ding, X.L.; Zhao, J.W.; Lu, X.S.; Desneux, N.; He, Y.H.; Weng, Q.Y. Effects of heat shock on survival and predation of an important whitefly predator, Serangium japonicum. Entomol. Exp. Appl. 2019, 167, 476–489. [Google Scholar] [CrossRef]
- Tarapacki, P.; Jørgensen, L.B.; Sørensen, J.G.; Andersen, M.K.; Colinet, H.; Overgaard, J. Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. J. Insect Physiol. 2021, 135, 104323. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, W.E.; Armbruster, P.A.; Holzapfel, C.M. Fitness consequences of hibernal diapause in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 1998, 79, 1458–1462. [Google Scholar] [CrossRef]
- Ellers, J.; Van Alphen, J.J. A trade-off between diapause duration and fitness in female parasitoids. Ecol. Entomol. 2002, 27, 279–284. [Google Scholar] [CrossRef]
- Win, A.T.; Ishikawa, Y. Effects of diapause on post-diapause reproductive investment in the moth Ostrinia scapulalis. Entomol. Exp. Appl. 2015, 157, 346–353. [Google Scholar] [CrossRef]
- Dhillon, M.K.; Hasan, F. Consequences of diapause on post-diapause development, reproductive physiology and population growth of Chilo partellus (Swinhoe). Physiol. Entomol. 2018, 43, 196–206. [Google Scholar] [CrossRef]
- Jansson, R.K.; Zitzman, A.E.; Lashomb, J.H. Effects of food plant and diapause on adult survival and fecundity of Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 1989, 18, 291–297. [Google Scholar] [CrossRef]
- Wang, X.P.; Xue, F.S.; Hua, A.I.; Ge, F. Effects of diapause duration on future reproduction in the cabbage beetle, Colaphellus bowringi: Positive or negative? Physiol. Entomol. 2006, 31, 190–196. [Google Scholar] [CrossRef]
- Musolin, D.L.; Fujisaki, K.; Numata, H. Photoperiodic control of diapause termination, colour change and postdiapause reproduction in the southern green stink bug, Nezara viridula. Physiol. Entomol. 2007, 32, 64–72. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.Q.; Feng, L.; Liu, W.; Zhu, L.; Lei, C.L.; Wang, X.P. Differences in the pre-diapause and pre-oviposition accumulation of critical nutrients in adult females of the beetle Colaphellus bowringi. Entomol. Exp. Appl. 2016, 160, 117–125. [Google Scholar] [CrossRef]
- Gao, Q.; Wei, B.X.; Liu, W.; Wang, J.L.; Zhou, X.M.; Wang, X.P. Differences in the development of internal reproductive organs, feeding amount and nutrient storage between pre-diapause and pre-reproductive Harmonia axyridis adults. Insects 2019, 10, 243. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhao, L. 2023. Difference in nutrient accumulation patterns between diapause-destined and non-diapause-destined larvae of Hyphantria cunea. Entomol. Exp. Appl. 2023, 171, 45–55. [Google Scholar] [CrossRef]
Shock Temperature | Cold Shock (−10 °C) | Heat Shock (43 °C) | ||
---|---|---|---|---|
Background temperature | 14 °C | 15 °C | 14 °C | 15 °C |
Sample size and df number | n = 72, df = 8 | n = 64, df = 7 | n = 72, df = 8 | n = 64, df = 7 |
Significance of the effect on: | ||||
Percentage of dead individuals | F = 55.3, p < 0.001 | F = 52.6, p < 0.001 | F = 18.6, p < 0.001 | F = 22.0, p < 0.001 |
Percentage of diapausing individuals | F = 11.0, p < 0.001 | F = 7.2, p < 0.001 | F = 58.8, p < 0.001 | F = 11.2, p < 0.001 |
Number of diapausing individuals | F = 44.9, p < 0.001 | F = 27.6, p < 0.001 | F = 18.1, p < 0.001 | F = 13.4, p < 0.001 |
Number of non-diapausing individuals | F = 28.4, p < 0.001 | F = 19.3, p < 0.001 | F = 18.5, p < 0.001 | F = 19.3, p < 0.001 |
Shock Temperature | Cold Shock (−10 °C) | Heat Shock (43 °C) | ||
---|---|---|---|---|
Background temperature | 14 °C | 15 °C | 14 °C | 15 °C |
Sample size and df number | n = 56, df = 5 | n = 56, df = 5 | n = 56, df = 5 | n = 56, df = 5 |
Significance of the effect on: | ||||
Percentage of dead individuals | F = 64.9, p < 0.001 | F = 57.2, p < 0.001 | F = 18.6, p < 0.001 | F = 32.9, p < 0.001 |
Percentage of diapausing individuals | F = 15.6, p < 0.001 | F = 26.9, p < 0.001 | F = 58.8, p < 0.001 | F = 23.2, p < 0.001 |
Number of diapausing individuals | F = 52.7, p < 0.001 | F = 44.9, p < 0.001 | F = 13.5, p < 0.001 | F = 12.7, p < 0.001 |
Number of non-diapausing individuals | F = 3.7, p = 0.006 | F = 11.0, p < 0.001 | F = 11.9, p < 0.001 | F = 3.0, p < 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voinovich, N.D.; Reznik, S.Y. Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae. Insects 2025, 16, 54. https://doi.org/10.3390/insects16010054
Voinovich ND, Reznik SY. Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae. Insects. 2025; 16(1):54. https://doi.org/10.3390/insects16010054
Chicago/Turabian StyleVoinovich, Natalia D., and Sergey Y. Reznik. 2025. "Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae" Insects 16, no. 1: 54. https://doi.org/10.3390/insects16010054
APA StyleVoinovich, N. D., & Reznik, S. Y. (2025). Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae. Insects, 16(1), 54. https://doi.org/10.3390/insects16010054