Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Turfgrass Growth and Maintenance
2.2. Insects
2.3. DNA Extraction and Library Preparation
- 515F-v1 (GTGYCAGCMGCCGCGGTAA);
- 806R-v1 (GGACTACNVGGGTWTCTAAT).
2.4. Metagenomic Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, G.; Egamberdieva, D.; Lugtenberg, B.; Hagemann, M. Symbiotic plant–microbe interactions: Stress protection, plant growth promotion, and biocontrol by Stenotrophomonas. In Symbioses and Stress; Seckbach, J., Grube, M., Eds.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Dordrecht, The Netherlands, 2010; Volume 17, pp. 445–460. [Google Scholar]
- Muñoz-Benavent, M.; Pérez-Cobas, A.E.; García-Ferris, C.; Moya, A.; Latorre, A. Insects’ potential: Understanding the functional role of their gut microbiome. J. Pharm. Biomed. Anal. 2021, 194, 113787. [Google Scholar] [CrossRef] [PubMed]
- Lewis, Z.; Lizé, A. Insect behaviour and the microbiome. Curr. Opin. Insect Sci. 2015, 9, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.J. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J. Chem. Ecol. 2020, 46, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Visôtto, L.E.; Oliveira, M.G.A.; Guedes, R.N.C.; Ribon, A.O.B.; Good-God, P.I.V. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J. Insect Physiol. 2009, 55, 185–191. [Google Scholar] [CrossRef]
- Bright, M.; Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 2010, 8, 218–230. [Google Scholar] [CrossRef]
- Lajoie, G.; Kembel, S.W. Plant–bacteria associations are phylogenetically structured in the phyllosphere. Mol. Ecol. 2021, 30, 5572–5587. [Google Scholar] [CrossRef]
- Blankenchip, C.L.; Michels, D.E.; Braker, H.E.; Goffredi, S.K. Diet breadth and exploitation of exotic plants shift the core microbiome of Cephaloleia, a group of tropical herbivorous beetles. PeerJ 2018, 6, e4793. [Google Scholar] [CrossRef]
- Li, Y.; Chesters, D.; Wang, M.Q.; Wubet, T.; Schuldt, A.; Anttonen, P.; Zhu, C.D. Tree diversity and functional leaf traits drive herbivore-associated microbiomes in subtropical China. Ecol. Evol. 2021, 11, 6153–6166. [Google Scholar] [CrossRef]
- Scully, E.D.; Geib, S.M.; Mason, C.J.; Carlson, J.E.; Tien, M.; Chen, H.Y.; Hoover, K. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis). Sci. Rep. 2018, 8, 9620. [Google Scholar] [CrossRef]
- McGraw, B.A.; Koppenhöfer, A.M. Biology and management of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae). In Handbook of Turfgrass Management and Physiology; CRC Press: Boca Raton, FL, USA, 2007; pp. 335–350. [Google Scholar]
- Vittum, P.J. Turfgrass Insects of the United States and Canada; Cornell University Press: Ithaca, NY, USA, 2020. [Google Scholar]
- McGraw, B.A.; Price, G.Y.; Simard, A.; Vittum, P.J. Reproductive phenology and feeding patterns of Listronotus maculicollis during spring emergence: Implications for spring management. Crop Sci. 2021, 61, 3197–3205. [Google Scholar] [CrossRef]
- McGraw, B.; Kline, D. Annual Bluegrass Weevil. Penn State Univ. Ext. 2024. Available online: http://extension.psu.edu/annual-bluegrass-weevil (accessed on 1 October 2024).
- Rothwell, N.L. Investigation into Listronotus maculicollis (Coleoptera: Curculionidae), a pest of highly maintained turfgrass. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2003. [Google Scholar]
- McGraw, B.A.; Koppenhöfer, A.M. Spatial distribution of colonizing Listronotus maculicollis populations: Implications for targeted management and host preference. J. Appl. Entomol. 2010, 134, 275–284. [Google Scholar] [CrossRef]
- Kostromytska, O.S.; Koppenhöfer, A.M. Ovipositional preferences and larval survival of annual bluegrass weevil, Listronotus maculicollis, on Poa annua and selected bentgrasses (Agrostis spp.). Entomol. Exp. Appl. 2014, 152, 108–119. [Google Scholar] [CrossRef]
- Kostromytska, O.S.; Koppenhöfer, A.M. Responses of Poa annua and three bentgrass species (Agrostis spp.) to adult and larval feeding of annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae). Bull. Entomol. Res. 2016, 106, 729–739. [Google Scholar] [CrossRef]
- Simard, A.; McGraw, B.A. Characterization of cool- and warm-season turfgrass host suitability to annual bluegrass weevil (Listronotus maculicollis, Kirby). Crop Sci. 2024, 64, 1–10. [Google Scholar] [CrossRef]
- Cameron, R.S.; Johnson, N.E. Biology and control of turfgrass weevil, a species of Hyperodes. Cornell Univ. Ext. Cornell Ext. Bull. 1971, 3, 1–31. [Google Scholar]
- Koppenhöfer, A.M.; McGraw, B.A.; Kostromytska, O.S.; Wu, S. Variable effect of larval stage on the efficacy of insecticides against Listronotus maculicollis (Coleoptera: Curculionidae) populations with different levels of pyrethroid resistance. Crop Prot. 2019, 125, 104888. [Google Scholar] [CrossRef]
- Ramoutar, D.; Alm, S.R.; Cowles, R.S. Pyrethroid resistance in populations of Listronotus maculicollis (Coleoptera: Curculionidae) from southern New England golf courses. J. Econ. Entomol. 2009, 102, 388–392. [Google Scholar] [CrossRef]
- Kostromytska, O.S.; Wu, S.; Koppenhöfer, A.M. Cross-resistance patterns to insecticides of several chemical classes among Listronotus maculicollis (Coleoptera: Curculionidae) populations with different levels of resistance to pyrethroids. J. Econ. Entomol. 2018, 111, 391–398. [Google Scholar] [CrossRef]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef]
- White, J.A.; Richards, N.K.; Laugraud, A.; Saeed, A.; Curry, M.M.; McNeill, M.R. Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microb. Ecol. 2015, 70, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Avila-Arias, H.; Scharf, M.E.; Turco, R.F.; Richmond, D.S. Soil environments influence gut prokaryotic communities in the larvae of the invasive Japanese beetle Popillia japonica Newman. Front. Microbiol. 2022, 13, 854513. [Google Scholar] [CrossRef] [PubMed]
- Nardon, P.; Lefevre, C.; Delobel, B.; Charles, H.; Heddi, A. Occurrence of endosymbiosis in Dryophthoridae weevils: Cytological insights into bacterial symbiotic structures. Symbiosis 2002, 33, 227–241. [Google Scholar]
- Anbutsu, H.; Moriyama, M.; Nikoh, N.; Hosokawa, T.; Futahashi, R.; Tanahashi, M.; Fukatsu, T. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. USA 2017, 114, E8382–E8391. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Lu, F.; Cheng, J.A.; Jiang, M.X.; Way, M.O. Identification and biological role of the endosymbionts Wolbachia in rice water weevil (Coleoptera: Curculionidae). Environ. Entomol. 2012, 41, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef]
- Mason, C.J.; Lowe-Power, T.M.; Rubert-Nason, K.F.; Lindroth, R.L.; Raffa, K.F. Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. J. Chem. Ecol. 2016, 42, 193–201. [Google Scholar] [CrossRef]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Cheng, Y. Linking plant secondary metabolites and plant microbiomes: A review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Xu, L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023, 9, 66. [Google Scholar] [CrossRef]
- Wielkopolan, B.; Obrępalska-Stęplowska, A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta 2016, 244, 313–332. [Google Scholar] [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series, and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Weber, C.F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, Y.; Zhang, J.; Lu, F.; Wei, J.; Jiang, M. The symbiotic bacteria Nardonella in rice water weevil (Coleoptera: Curculionidae): Diversity, density, and associations with host reproduction. Ann. Entomol. Soc. Am. 2016, 109, 415–423. [Google Scholar] [CrossRef]
- Kuriwada, T.; Hosokawa, T.; Kumano, N.; Shiromoto, K.; Haraguchi, D.; Fukatsu, T. Biological role of Nardonella endosymbiont in its weevil host. PLoS ONE 2010, 5, e13101. [Google Scholar] [CrossRef]
- Hosokawa, T.; Koga, R.; Tanaka, K.; Moriyama, M.; Anbutsu, H.; Fukatsu, T. Nardonella endosymbionts of Japanese pest and non-pest weevils (Coleoptera: Curculionidae). Appl. Entomol. Zool. 2015, 50, 223–229. [Google Scholar] [CrossRef]
- Teoh, M.C.; Furusawa, G.; Veera Singham, G. Multifaceted interactions between the Pseudomonads and insects: Mechanisms and prospects. Arch. Microbiol. 2021, 203, 1891–1915. [Google Scholar] [CrossRef]
- Chen, W.J.; Hsieh, F.C.; Hsu, F.C.; Tasy, Y.F.; Liu, J.R.; Shih, M.C. Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects. PLoS Pathog. 2014, 10, e1004288. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Zhang, X.; Zhang, K.; Li, Y.; Yin, Y.; Zhang, Z. Beneficial bacteria in the intestines of housefly larvae promote larval development and humoral phenoloxidase activity, while harmful bacteria do the opposite. Front. Immunol. 2022, 13, 938972. [Google Scholar] [CrossRef]
- Adams, A.S.; Currie, C.R.; Cardoza, Y.; Klepzig, K.D.; Raffa, K.F. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 2009, 39, 1133–1147. [Google Scholar] [CrossRef]
- Ramalho, M.D.O.; Kim, Z.; Wang, S.; Moreau, C.S. Wolbachia across social insects: Patterns and implications. Ann. Entomol. Soc. Am. 2021, 114, 206–218. [Google Scholar] [CrossRef]
- Correa, C.C.; Ballard, J.W.O. Wolbachia associations with insects: Winning or losing against a master manipulator. Front. Ecol. Evol. 2016, 3, 153. [Google Scholar] [CrossRef]
- Brownlie, J.C.; Cass, B.N.; Riegler, M.; Witsenburg, J.J.; Iturbe-Ormaetxe, I.; McGraw, E.A.; O’Neill, S.L. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 2009, 5, e1000368. [Google Scholar] [CrossRef]
- Brownlie, J.C.; Johnson, K.N. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009, 17, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef]
- Wasala, S.K.; Brown, A.M.; Kang, J.; Howe, D.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front. Microbiol. 2019, 10, 964. [Google Scholar] [CrossRef]
- Mejia, A.J.; Dutra, H.L.C.; Jones, M.J.; Perera, R.; McGraw, E.A. Cross-tissue and generation predictability of relative Wolbachia densities in the mosquito Aedes aegypti. Parasites Vectors 2022, 15, 128. [Google Scholar] [CrossRef]
- Kajtoch, Ł.; Kotásková, N. Current state of knowledge on Wolbachia infection among Coleoptera: A systematic review. PeerJ 2018, 6, e4471. [Google Scholar] [CrossRef]
- Lachowska, D.; Kajtoch, Ł.; Knutelski, S. Occurrence of Wolbachia in central European weevils: Correlations with host systematics, ecology, and biology. Entomol. Exp. Appl. 2010, 135, 105–118. [Google Scholar] [CrossRef]
- Li, G.; Liu, P.; Zhao, J.; Su, L.; Zhao, M.; Jiang, Z.; Yang, X. Correlation of microbiomes in “plant-insect-soil” ecosystem. Front. Microbiol. 2023, 14, 1088532. [Google Scholar] [CrossRef]
- Gupta, A.; Nair, S. Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front. Microbiol. 2020, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.; Moran, N.A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.T.; Sanchez, L.G.; Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 2013, 8, e61218. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.E.; Brosnan, J.T.; Trigiano, R.N.; Horvath, B.J.; Shekoofa, A.; Mueller, T.C. Current understanding of the Poa annua life cycle. Crop Sci. 2021, 61, 1527–1537. [Google Scholar] [CrossRef]
- Stier, J.C. A short history of creeping bentgrass. Grass Roots 2006, 35, 4–9. [Google Scholar]
- Bonos, S.A.; Huff, D.R. Cool-season grasses: Biology and breeding. In Turfgrass: Biology, Use, and Management; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 56, pp. 591–660. [Google Scholar]
OTU | Alignment Classification | Top BLAST Result | BLAST Coverage | BLAST % Identity | Relative Abundance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A4A | A4L | PCA | PCL | PAA | PAL | All | |||||
1 | Unknown Bacteria | L. bonariensis endosymbiont | 100% | 98.42% | 44.20% | 30.40% | 60.40% | 31.50% | 28.90% | 15.80% | 35.20% |
2 | Pseudomonas sp. | Pseudomonas sp. | 100% | 100.00% | 0.00% | 20.00% | 0.10% | 24.10% | 0.00% | 30.80% | 12.50% |
3 | Unknown Bacteria | Wolbachia sp. | 100% | 100.00% | 29.20% | 5.90% | 21.70% | 2.70% | 54.10% | 0.70% | 19.00% |
4 | Aeromonas sp. | Aeromonas sp. | 100% | 100.00% | 0.00% | 34.30% | 0.00% | 6.00% | 0.00% | 0.00% | 6.70% |
5 | Klebsiella sp. | Unknown Enterobacteriaceae | 100% | 100.00% | 0.00% | 0.30% | 0.00% | 4.50% | 0.00% | 33.30% | 6.30% |
6 | Pseudomonas sp. | Pseudomonas sp. | 100% | 100.00% | 0.20% | 2.10% | 0.00% | 8.30% | 0.10% | 6.20% | 2.80% |
7 | Sphingomonas sp. | Sphingomonas sp. | 100% | 100.00% | 0.60% | 0.90% | 0.10% | 4.00% | 0.30% | 1.70% | 1.20% |
8 | Pseudoxanthomonas sp. | Pseudoxanthomonas sp. | 100% | 100.00% | 0.20% | 1.00% | 0.70% | 0.50% | 0.20% | 2.30% | 0.80% |
9 | Chryseobacterium sp. | Chryseobacterium sp. | 100% | 100.00% | 7.90% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 1.30% |
10 | Enterococcus sp. | Enterococcus sp. | 100% | 100.00% | 0.10% | 0.00% | 0.10% | 4.30% | 0.10% | 0.00% | 0.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Price, G.; Simard, A.; McGraw, B.A. Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants. Insects 2025, 16, 114. https://doi.org/10.3390/insects16020114
Price G, Simard A, McGraw BA. Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants. Insects. 2025; 16(2):114. https://doi.org/10.3390/insects16020114
Chicago/Turabian StylePrice, Garrett, Audrey Simard, and Benjamin A. McGraw. 2025. "Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants" Insects 16, no. 2: 114. https://doi.org/10.3390/insects16020114
APA StylePrice, G., Simard, A., & McGraw, B. A. (2025). Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants. Insects, 16(2), 114. https://doi.org/10.3390/insects16020114