Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection and Rearing
2.2. Larval Diet Preparation
2.3. Chemicals
2.4. Effect of IGRs on B. cucurbitae Fecundity and Adult Emergence
2.5. Effect of Lufenuron on Sex-Specific Sterility
2.6. Field Testing of Lufenuron-Treated Bait
2.7. Fruit Infestation Assessment
2.8. Statistical Analysis
3. Results
3.1. Effect of IGRs on Fecundity and Adult Emergence
3.1.1. Effect of IGR Concentrations on Fecundity
3.1.2. Effect of IGR Concentrations on Adult Emergence
3.2. Effect of Lufenuron on Sex-Specific Sterility
3.2.1. Effect of Lufenuron-Induced Sex-Specific Sterility on Egg Deposition
3.2.2. Effect of Lufenuron-Induced Sex-Specific Sterility on Adult Emergence
3.3. Field Testing of Bait Traps for Adult Captures and Damage Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhillon, M.; Singh, R.; Naresh, J.; Sharma, H. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. J. Insect Sci. 2005, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- McQuate, G.T.; Liquido, N.J.; Nakamichi, K.A. Annotated world bibliography of host plants of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Insecta Mundi 2017, 0527, 1–339. [Google Scholar]
- Vayssières, J.-F.; Rey, J.-Y.; Traoré, L. Distribution and host plants of Bactrocera cucurbitae in West and Central Africa. Fruits 2007, 62, 391–396. [Google Scholar] [CrossRef]
- McCracken, A.W.; Niazy, N.; Turi, S.; Arya, V.; Kempraj, V.; Morimoto, J. A novel protein-based fruit fly trap in melon flies Bactrocera cucurbitae for effective pest control management. J. Appl. Entomol. 2023, 147, 916–923. [Google Scholar] [CrossRef]
- Bezzi, M. Indian trypaneids (fruit flies) in the collection of the Indian Museum, Calcutta. Mem. Indian Mus. 1913, 3, 53–175. [Google Scholar]
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 297–318. [Google Scholar] [CrossRef]
- Patel, N.; Patel, K. Comparative biology of melon fruit fly, Bactrocera cucurbitae in different cucurbitaceous crops. J. Entomol. Zool. Stud. 2018, 6, 694–698. [Google Scholar]
- Mukherjee, S.; Tithi, D.A.; Bachchu, A.; Ara, R.; Amin, M.R. Life history and management of cucurbit fruit fly Bactrocera cucurbitae on sweet gourd. J. Sci. Technol. 2007, 5, 17–27. [Google Scholar]
- Vargas, R.I.; Souder, S.K.; Morse, J.G.; Grafton-Cardwell, E.E.; Haviland, D.R.; Kabashima, J.N.; Faber, B.A.; Mackey, B.; Cook, P. Captures of wild Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in traps with improved multilure TMR dispensers weathered in California. J. Econ. Entomol. 2016, 109, 607–612. [Google Scholar] [CrossRef]
- Laskar, N. Biology and biometrics of melon fruit fly, Bactrocera cucurbitae (Coq.) on bitter gourd, Momordica charantia L. and pumpkin, Cucurbita pepo L. Curr. Biot. 2013, 7, 51–59. [Google Scholar]
- Jakhar, S.; Kumar, V.; Choudhary, P.K.; Lal, B. Estimation losses due to fruit fly, Bactrocera cucurbitae (Coquillett) on long melon in semi-arid region of Rajasthan. J. Entomol. Zool. Stud. 2020, 8, 632–635. [Google Scholar]
- Gyawali, P.; Bohara, K.; Rijal, S.; Karki, N.; Shahi, J. A comprehensive review on integrated pest management of melon fruit fly (Bactrocera cucurbitae). Int. J. Pest Manag. 2023, 1–9. [Google Scholar] [CrossRef]
- Oz, E.; Polat, B.; Cengiz, A.; Kahraman, S.; Gultekin, Z.N.; Caliskan, C. Effects of solid and aqueous dietary diflubenzuron ingestion on some biological parameters in synthetic pyrethroid-resistant German cockroach, Blattella germanica L. (Blattodea: Ectobiidae). Med. Vet. Entomol. 2024, 38, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Pener, M.P.; Dhadialla, T.S. An overview of insect growth disruptors; Applied aspects. Adv. Insect Physiol. 2012, 43, 1–162. [Google Scholar]
- Dhadialla, T.S.; Carlson, G.R.; Le, D.P. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 1998, 43, 545–569. [Google Scholar] [CrossRef]
- Hasnain, M.; Saeed, S.; Naeem-Ullah, U.; Ullah, S. Evaluation of chemosterility effect of different insect growth regulators on Bactrocera zonata population. Sci. Prog. 2023, 106, 368504231155388. [Google Scholar] [CrossRef]
- Adnan, S.M.; Farhana, I.; Rempoulakis, P.; Taylor, P.W. Methoprene treatment increases activity, starvation and desiccation risk of Queensland fruit fly. J. Insect Physiol. 2022, 136, 104340. [Google Scholar] [CrossRef]
- Pinheiro, L.A.; Dáder, B.; Wanumen, A.C.; Pereira, J.A.; Santos, S.A.P.; Medina, P. Side Effects of Pesticides on the Olive Fruit Fly Parasitoid Psyttalia concolor (Szépligeti): A Review. Agronomy 2020, 10, 1755. [Google Scholar] [CrossRef]
- Mohandass, S.M.; Arthur, F.H.; Zhu, K.Y.; Throne, J.E. Hydroprene: Mode of action, current status in stored-product pest management, insect resistance, and future prospects. Crop Prot. 2006, 25, 902–909. [Google Scholar] [CrossRef]
- Abo-Elghar, G.E.; Fujiyoshi, P.; Matsumura, F. Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem. Mol. Biol. 2004, 34, 743–752. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Vayias, B.J.; Tomanović, Z. Efficacy of Insect Growth Regulators as Grain Protectants against Two Stored-Product Pests in Wheat and Maize. J. Food Prot. 2012, 75, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L. Laboratory evaluation on a potential birth control diet for fruit fly sterile insect technique (SIT). Pestic. Biochem. Physiol. 2017, 140, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ramos, I.; Fernández, C.E.; González-Núñez, M. Laboratory evaluation of insect growth regulators against the spotted wing drosophila, Drosophila suzukii. J. Pest Sci. 2024, 97, 885–895. [Google Scholar] [CrossRef]
- Chang, C.L.; Cho, I.K.; Li, Q.X. Laboratory evaluation of the chemosterilant lufenuron against the fruit flies Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. J. Asia-Pac. Entomol. 2012, 15, 13–16. [Google Scholar] [CrossRef]
- Vinuela, E.; Adán, A.; Smagghe, G.; Gonzalez, M.; Medina, M.P.; Budia, F.; Vogt, H.; Estal, P.D. Laboratory effects of ingestion of azadirachtin by two pests (Ceratitis capitata and Spodoptera exigua) and three natural enemies (Chrysoperla carnea, Opius concolor and Podisus maculiventris). Biocontrol Sci. Technol. 2000, 10, 165–177. [Google Scholar] [CrossRef]
- Zapata, N.; Budia, F.; Viñuela, E.; Medina, P. Laboratory evaluation of natural pyrethrins, pymetrozine and triflumuron as alternatives to control Ceratitis capitata adults. Phytoparasitica 2006, 34, 420–427. [Google Scholar] [CrossRef]
- Hasnain, M.; Saeed, S.; Naeem-Ullah, U.; Ullah, S. Development of synthetic food baits for mass trapping of Bactrocera zonata S. (Diptera: Tephritidae). J. King Saud Univ. Sci. 2022, 34, 101667. [Google Scholar] [CrossRef]
- Cruz, G.S.; Wanderley-Teixeira, V.; Antonino, J.D.; Gonçalves, G.G.; Costa, H.N.; Ferreira, M.C.N.; Neto, C.L.; Alves, L.C.; Santos, F.A.B.; Teixeira, Á.A. Lufenuron indirectly downregulates Vitellogenin in the boll weevil females reducing egg viability. Physiol. Entomol. 2021, 46, 24–33. [Google Scholar] [CrossRef]
- Panmei, K.; Lanbiliu, P.; Samal, R.R.; Kumar, S. Lufenuron: A Potential Chitin Synthesis Inhibitor Against Aedes aegypti L. In Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Bali, Indonesia, 6–9 October 2019; pp. 154–160. [Google Scholar]
- A Hamilton, J.; Wada-Katsumata, A.; Ko, A.; Schal, C. Effects of novaluron ingestion and topical application on German cockroach (Blattella germanica) development and reproduction. Pest Manag. Sci. 2021, 77, 877–885. [Google Scholar] [CrossRef]
- Catchot, B.; Anderson, C.J.; Gore, J.; Jackson, R.; Rakshit, K.; Musser, F.; Krishnan, N. Novaluron prevents oogenesis and oviposition by inducing ultrastructural changes in ovarian tissue of young adult Lygus lineolaris. Pest Manag. Sci. 2020, 76, 4057–4063. [Google Scholar] [CrossRef]
- Cottage, E.; Gunning, R.V. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci. J. Mol. Neurosci. 2006, 30, 39–40. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Elson-Harris, M.M. Fruit Flies of Economic Significance: Their Identification and Bionomics; CAB International: Wallingford, UK, 1992; 601p. [Google Scholar]
- Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Shoueir, K.R. Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci. 2015, 10, 870–882. [Google Scholar] [CrossRef]
- Khan, R.A.; Naveed, M. Occurrence and seasonal abundance of fruit fly, Bactrocera zonata Saunders (Diptera: Tephritidae) in relation to meteorological factors. Pak. J. Zool. 2017, 49, 999–1003. [Google Scholar] [CrossRef]
- Nisar, M.J.; Gogi, M.D.; Arif, M.J.; Sahi, S.T. Toxicity and chemosterility impact of insect growth regulators baited diet on adult peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae). Pak. J. Agric. Sci. 2020, 57, 1089–1099. [Google Scholar]
- Navarro-Llopis, V.; Vacas, S.; Sanchis, J.; Primo, J.; Alfaro, C. Chemosterilant bait stations coupled with sterile insect technique: An integrated strategy to control the Mediterranean fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 2011, 104, 1647–1655. [Google Scholar] [CrossRef]
- Bořkovec, A.B. Chemosterilants. Insect Growth Regulators; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–20. [Google Scholar]
- Pleydell, D.R.J.; Bouyer, J. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Commun. Biol. 2019, 2, 201. [Google Scholar] [CrossRef]
- Kandul, N.P.; Liu, J.; Sanchez, C.H.M.; Wu, S.L.; Marshall, J.M.; Akbari, O.S. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. 2019, 10, 84. [Google Scholar] [CrossRef]
- Navarro-Llopis, V.; Sanchis, J.; Primo-Millo, J.; Primo-Yúfera, E. Chemosterilants as control agents of Ceratitis capitata (Diptera: Tephritidae) in field trials. Bull. Entomol. Res. 2007, 97, 359–368. [Google Scholar] [CrossRef]
- Sánchez-bayo, F. Insecticides Mode of Action in Relation to Their Toxicity to Non-Target Organisms. J. Environ. Anal. Toxicol. 2012, S4, 002. [Google Scholar] [CrossRef]
- Moya, P.; Flores, S.; Ayala, I.; Sanchis, J.; Montoya, P.; Primo, J. Evaluation of lufenuron as a chemosterilant against fruit flies of the genus Anastrepha (Diptera: Tephritidae). Pest Manag. Sci. 2010, 66, 657–663. [Google Scholar] [CrossRef]
- Casaña-Giner, V.; Gandía-Balaguer, A.; Mengod-Puerta, C.; Primo-Millo, J.; Primo-Yúfera, E. Insect growth regulators as chemosterilants for Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 1999, 92, 303–308. [Google Scholar] [CrossRef]
- Paul, S.; Das, S. Natural insecticidal proteins, the promising bio-control compounds for future crop protection. Nucleus 2021, 64, 7–20. [Google Scholar] [CrossRef]
- Epsky, N.D.; Heath, R.R. Exploiting the interactions of chemical and visual cues in behavioral control measures for pest tephritid fruit flies. Fla. Entomol. 1998, 81, 273–282. [Google Scholar] [CrossRef]
- Reddy, G.V.; Fettköther, R.; Noldt, U.; Dettner, K. Capture of female Hylotrupes bajulus as influenced by trap type and pheromone blend. J. Chem. Ecol. 2005, 31, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.D.; Bento, J.M.S.; Hanks, L.M.; Millar, J.G. (Z)-7-Hexadecene is an aggregation-sex pheromone produced by males of the South American cerambycid beetle Susuacanga octoguttata. J. Chem. Ecol. 2018, 44, 1115–1119. [Google Scholar] [CrossRef]
- Bouyer, J.; Vreysen, M.J. Concerns about the feasibility of using “precision guided sterile males” to control insects. Nat. Commun. 2019, 10, 3954. [Google Scholar] [CrossRef]
- Li, M.; Yang, T.; Bui, M.; Gamez, S.; Wise, T.; Kandul, N.P.; Liu, J.; Alcantara, L.; Lee, H.; Edula, J.R. Suppressing mosquito populations with precision guided sterile males. Nat. Commun. 2021, 12, 5374. [Google Scholar] [CrossRef]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon, P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Neglected Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef]
- Thomas, D.D.; Donnelly, C.A.; Wood, R.J.; Alphey, L.S. Insect population control using a dominant, repressible, lethal genetic system. Science 2000, 287, 2474–2476. [Google Scholar] [CrossRef]
- Orozco, D.; Domínguez, J.; Reyes, J.; Villaseñor, A.; Gutiérrez, J. SIT and biological control of Anastrepha fruit flies in Mexico. In Proceedings of the 6th International Fruit Fly Symposium, Stellenbosch, South Africa, 6–10 May 2002; pp. 245–249. [Google Scholar]
- Zavala-López, J.; Marte-Diaz, G.; Martínez-Pujols, F. Successful area-wide eradication of the invading Mediterranean fruit fly in the Dominican Republic. In Area-Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 519–537. [Google Scholar]
- Suckling, D.M.; Kean, J.M.; Stringer, L.D.; Cáceres-Barrios, C.; Hendrichs, J.; Reyes-Flores, J.; Dominiak, B.C. Eradication of tephritid fruit fly pest populations: Outcomes and prospects. Pest Manag. Sci. 2016, 72, 456–465. [Google Scholar] [CrossRef]
- Zhou, F.; Zhu, G.; Zhao, H.; Wang, Z.; Xue, M.; Li, X.; Xu, H.; Ma, X.; Liu, Y. Sterilization effects of adult-targeted baits containing insect growth regulators on Delia antiqua. Sci. Rep. 2016, 6, 32855. [Google Scholar] [CrossRef]
- Khan, Z.A.; Koondhar, M.A.; Khan, I.; Ali, U.; Tianjun, L. Dynamic linkage between industrialization, energy consumption, carbon emission, and agricultural products export of Pakistan: An ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 43698–43710. [Google Scholar] [CrossRef]
Source | F | Df | P |
---|---|---|---|
Cross | 453.18 | 3 | <0.001 |
Days | 8.85 | 5 | <0.001 |
Cross × Days | 1882.81 | 15 | <0.001 |
Source | F | df | p |
---|---|---|---|
Cross | 320.17 | 3 | <0.001 |
Days | 8.39 | 5 | <0.001 |
Cross × Days | 61.47 | 15 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kainat, I.; Saeed, S.; Farooq, M.A.; Alkherb, W.A.H.; Abbasi, A.; Baig, F.; Liaqat, U.; Khan, F.Z.A.; Akram, M.I.; Hasnain, M.; et al. Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae). Insects 2025, 16, 137. https://doi.org/10.3390/insects16020137
Kainat I, Saeed S, Farooq MA, Alkherb WAH, Abbasi A, Baig F, Liaqat U, Khan FZA, Akram MI, Hasnain M, et al. Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae). Insects. 2025; 16(2):137. https://doi.org/10.3390/insects16020137
Chicago/Turabian StyleKainat, Iqra, Shafqat Saeed, Muhammad Asif Farooq, Wafa A. H. Alkherb, Asim Abbasi, Farrukh Baig, Umer Liaqat, Fawad Zafar Ahmad Khan, Muhammad Irfan Akram, Muhammad Hasnain, and et al. 2025. "Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae)" Insects 16, no. 2: 137. https://doi.org/10.3390/insects16020137
APA StyleKainat, I., Saeed, S., Farooq, M. A., Alkherb, W. A. H., Abbasi, A., Baig, F., Liaqat, U., Khan, F. Z. A., Akram, M. I., Hasnain, M., & Rebouh, N. Y. (2025). Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae). Insects, 16(2), 137. https://doi.org/10.3390/insects16020137