Exploiting Trap Type and Color for Monitoring Macadamia Felted Coccid Acanthococcus ironsidei (Williams) and Associated Parasitic Wasps in Macadamia Orchards in Hawai’i
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yalemar, J.A.; Tateno-Bisel, A.P.; Chun, S.G.; Ramadan, M.M. Prospects for Biological Control of Macadamia Felted Coccid in Hawaii with Metaphycus macadamiae Polaszek & Noyes, a New Encyrtid Wasp Native to New South Wales, Australia. Insects 2023, 14, 793. [Google Scholar] [CrossRef]
- Williams, D.J. Scale Insects (Homoptera: Coccoidea) on Macadamia. Aust. J. Entomol. 1973, 12, 81–91. [Google Scholar] [CrossRef]
- Conant, P.; Tsuda, D.M.; Heu, R.A.; Teramoto, K.K. Macadamia Felted Coccid. New Pest Advisory no. 05-01. 2005. Available online: https://hdoa.hawaii.gov/pi/files/2013/01/npa05-01-MFC.pdf (accessed on 1 October 2024).
- Wright, M.G.; Conant, P. Pest Status and Management of Macadamia Felted Coccid (Hemiptera: Eriococcidae) in Hawaii. S. Afr. Macadamia Grow. Assoc. Handb. 2009, 17, 69–72. [Google Scholar]
- Ironside, D.A.; Swaine, G.; Corcoran, R.J. Methyl Bromide Fumigation for Eliminating Macadamia Felted Coccid (Eriococcus Ironsidei Williams) from Propagating Material. Qld. J. Agric. Anim. Sci. 1978, 35, 29–33. [Google Scholar]
- Jones, V.P. Macadamia Integrated Pest Management: IPM of Insects and Mites Attacking Macadamia Nuts in Hawaii; University of Hawaii: Honolulu, HI, USA, 2002. [Google Scholar]
- Zarders, D.R.; Wright, M.G. Macadamia Felted Coccid, Eriococcus ironsidei: Biology and Life Cycle in Hawaii. Proc. Hawaii. Entomol. Soc. 2016, 48, 51–55. [Google Scholar]
- Aigbedion-Atalor, P.O.; Hill, M.P.; Zalucki, M.P.; Obala, F.; Idriss, G.E.; Midingoyi, S.-K.; Chidege, M.; Ekesi, S.; Mohamed, S.A. The South America Tomato Leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), Spreads Its Wings in Eastern Africa: Distribution and Socioeconomic Impacts. J. Econ. Entomol. 2019, 112, 2797–2807. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into Insecticide-Resistance Mechanisms in Invasive Species: Challenges and Control Strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef] [PubMed]
- Venette, R.C.; Hutchison, W.D. Invasive Insect Species: Global Challenges, Strategies & Opportunities. Front. Insect Sci. 2021, 1, 650520. [Google Scholar]
- Araújo, M.F.; Castanheira, E.M.; Sousa, S.F. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023, 28, 3641. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 2022, 67, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Bryant, R.J. Innovation in Insecticide Discovery: Approaches to the Discovery of New Classes of Insecticides. Pest Manag. Sci. 2022, 78, 3226–3247. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Aurich, D.; Schymanski, E.L.; Sims, K.; Hale, S.E. Avoiding the next Silent Spring: Our Chemical Past, Present, and Future. Environ. Sci. Technol. 2023, 57, 6355–6359. [Google Scholar] [CrossRef] [PubMed]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Kogan, M. Integrated Pest Management: Historical Perspectives and Contemporary Developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef]
- van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological Control Using Invertebrates and Microorganisms: Plenty of New Opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Adamson, D.; Furlong, M.J. The Future of IPM: Whither or Wither? Aust. J. Entomol. 2009, 48, 85–96. [Google Scholar] [CrossRef]
- Eskenazi, B.; Marks, A.R.; Bradman, A.; Harley, K.; Barr, D.B.; Johnson, C.; Morga, N.; Jewell, N.P. Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children. Environ. Health Perspect. 2007, 115, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Heimpel, G.E.; Yang, Y.; Hill, J.D.; Ragsdale, D.W. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions. PLoS ONE 2013, 8, e72293. [Google Scholar] [CrossRef]
- Weisenburger, D.D. Human Health Effects of Agrichemical Use. Hum. Pathol. 1993, 24, 571–576. [Google Scholar] [CrossRef]
- Gutierrez-Coarite, R.; Pulakkatu-Thodi, I.; Zarders, D.; Mollinedo, J.; Yalemar, J.; Wright, M.G.; Cho, A. Macadamia Felted Coccid Eriococcus ironsidei (Hemiptera: Eriococidae) Description, Monitoring, and Control. Coll. Trop. Agric. Hum. Resour. Univ. Hawaii Manoa Insect Pests 2017, IP-43, 1–5. [Google Scholar]
- Pulakkatu-thodi, I.; Dzurisin, J.; Follett, P. Evaluation of Macadamia Felted Coccid (Hemiptera: Eriococcidae) Damage and Cultivar Susceptibility Using Imagery from a Small Unmanned Aerial Vehicle (sUAV), Combined with Ground Truthing. Pest Manag. Sci. 2022, 78, 4533–4543. [Google Scholar] [CrossRef]
- Dearden, A.E.; Wood, M.J.; Frend, H.O.; Butt, T.M.; Allen, W.L. Visual Modelling Can Optimise the Appearance and Capture Efficiency of Sticky Traps Used to Manage Insect Pests. J. Pest Sci. 2024, 97, 469–479. [Google Scholar] [CrossRef]
- Arnold, S.E.; Stevenson, P.C.; Belmain, S.R. Shades of Yellow: Interactive Effects of Visual and Odour Cues in a Pest Beetle. PeerJ 2016, 4, e2219. [Google Scholar] [CrossRef]
- Giurfa, M.; Vorobyev, M.; Brandt, R.; Posner, B.; Menzel, R. Discrimination of Coloured Stimuli by Honeybees: Alternative Use of Achromatic and Chromatic Signals. J. Comp. Physiol. A 1997, 180, 235–243. [Google Scholar] [CrossRef]
- Ren, X.; Wu, S.; Xing, Z.; Xu, R.; Cai, W.; Lei, Z. Behavioral Responses of Western Flower Thrips (Frankliniella Occidentalis) to Visual and Olfactory Cues at Short Distances. Insects 2020, 11, 177. [Google Scholar] [CrossRef]
- Sampson, C.; Turner, R.; Ali, A. Monitoring and Trapping with Sticky Traps, What’s New? Int. Pest Control 2021, 63, 166. [Google Scholar]
- Vernon, R.S.; Gillespie, D.R. Spectral Responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) Determined by Trap Catches in Greenhouses. Environ. Entomol. 1990, 19, 1229–1241. [Google Scholar] [CrossRef]
- Sétamou, M.; Sanchez, A.; Saldaña, R.R.; Patt, J.M.; Summy, R. Visual Responses of Adult Asian Citrus Psyllid (Hemiptera: Liviidae) to Colored Sticky Traps on Citrus Trees. J. Insect Behav. 2014, 27, 540–553. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.R.; Byers, J.A.; Schiffhauer, D. Effect of Trap Color and Height on Captures of Blunt-Nosed and Sharp-Nosed Leafhoppers (Hemiptera: Cicadellidae) and Non-Target Arthropods in Cranberry Bogs. Crop Prot. 2012, 40, 132–144. [Google Scholar] [CrossRef]
- Mahot, H.C.; Mahob, J.R.; Hall, D.R.; Arnold, S.E.; Fotso, A.K.; Membang, G.; Ewane, N.; Kemga, A.; Fiaboe, K.K.; Bilong, C.F. Visual Cues from Different Trap Colours Affect Catches of Sahlbergella singularis (Hemiptera: Miridae) in Sex Pheromone Traps in Cameroon Cocoa Plantations. Crop Prot. 2020, 127, 104959. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Byers, J.A.; Rodriguez-Saona, C. Evaluation of Color Traps for Monitoring Lygus Spp.: Design, Placement, Height, Time of Day, and Non-Target Effects. Crop Prot. 2008, 27, 171–181. [Google Scholar] [CrossRef]
- Mazzoni, V.; Trona, F.; Ioriatti, C.; Lucchi, A.; Eriksson, A.; Anfora, G. Attractiveness of Different Colours to Scaphoideus titanus Ball (Hemiptera: Cicadellidae) Adults. IOBC/wprs Bull. 2011, 67, 281–284. [Google Scholar]
- Thongjua, T.; Thongjua, J.; Sriwareen, J.; Khumpairun, J. Attraction Effect of Thrips (Thysanoptera: Thripidae) to Sticky Trap Color on Orchid Greenhouse Condition. J. Agric. Technol. 2015, 11, 2451–2455. [Google Scholar]
- Santer, R.D.; Allen, W.L. Optimising the Colour of Traps Requires an Insect’s Eye View. Pest Manag. Sci. 2024, 80, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Holthouse, M.C.; Spears, L.R.; Alston, D.G. Comparison of Yellow and Blue Sticky Cards for Detection and Monitoring Parasitoid Wasps of the Invasive Halyomorpha Halys (Hemiptera: Pentatomidae). J. Insect Sci. 2021, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Goulet, H.; John, T.H. (Eds.) Hymenoptera of the World: An Identification Guide to Families; Research Branch, Agriculture Canada: Ottawa, ON, Canada, 1993.
- Triapitsyn, S.V.; Beardsley, J.W. A review of the Hawaiian species of Anagrus (Hymenoptera: Mymaridae). Proc. Hawaii. Entomol. Soc. 2000, 34, 23–48. [Google Scholar]
- Barcode of Life Data Systems. Available online: https://v3.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=607505 (accessed on 1 November 2023).
- Gutierrez-Coarite, R.; Cho, A.H.; Mollinedo, J.; Pulakkatu-Thodi, I.; Wright, M.G. Macadamia Felted Coccid Impact on Macadamia Nut Yield in the Absence of a Specialized Natural Enemy, and Economic Injury Levels. Crop Prot. 2021, 139, 105378. [Google Scholar] [CrossRef]
- Grijalva, I.; Skidmore, A.R.; Milne, M.A.; Olaya-Arenas, P.; Kaplan, I.; Foster, R.E.; Yaninek, J.S. Integrated Pest Management Enhances Biological Control in a US Midwestern Agroecosystem by Conserving Predators and Non-Pest Prey. Agric. Ecosyst. Environ. 2024, 368, 109009. [Google Scholar] [CrossRef]
- Heraty, J. Parasitoid Biodiversity and Insect Pest Management. In Insect Biodiversity: Science and Society; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 603–625. [Google Scholar]
- Macfadyen, S.; Davies, A.P.; Zalucki, M.P. Assessing the Impact of Arthropod Natural Enemies on Crop Pests at the Field Scale. Insect Sci. 2015, 22, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Rojas, M.G. Nutritional Ecology of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae): Growth and Survival of Incipient Colonies Feeding on Preferred Wood Species. J. Econ. Entomol. 2003, 96, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Wilby, A.; Thomas, M.B. Natural Enemy Diversity and Pest Control: Patterns of Pest Emergence with Agricultural Intensification. Ecol. Lett. 2002, 5, 353–360. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Mohamed, S.A.; Hill, M.P.; Zalucki, M.P.; Azrag, A.G.; Srinivasan, R.; Ekesi, S. Host Stage Preference and Performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a Candidate for Classical Biological Control of Tuta absoluta in Africa. Biol. Control 2020, 144, 104215. [Google Scholar] [CrossRef]
- Gutierrez-Coarite, R.; Mollinedo, J.; Cho, A.; Wright, M.G. Canopy Management of Macadamia Trees and Understory Plant Diversification to Reduce Macadamia Felted Coccid (Eriococcus ironsidei) Populations. Crop Prot. 2018, 113, 75–83. [Google Scholar] [CrossRef]
- Gutierrez-Coarite, R.; Yoneishi, N.M.; Pulakkatu-Thodi, I.; Mollinedo, J.; Calla, B.; Wright, M.G.; Geib, S.M. PCR-Based Gut Content Analysis to Detect Predation of Eriococcus ironsidei (Hemiptera: Eriococcidae) by Coccinellidae Species in Macadamia Nut Orchards in Hawaii. J. Econ. Entomol. 2018, 111, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Some Characteristics of Simple Types of Predation and Parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Idemudia, I.; Fening, K.O.; Agboyi, L.K.; Wilson, D.; Clottey, V.A.; Beseh, P.; Aigbedion-Atalor, P.O. First Report of the Predatory Potential and Functional Response of the Red Flower Assassin Bug Rhynocoris segmentarius (Germar), a Natural Enemy of Spodoptera frugiperda (JE Smith). Biol. Control 2024, 191, 105465. [Google Scholar] [CrossRef]
- Van Lenteren, J.C.; Lanzoni, A.; Hemerik, L.; Bueno, V.H.P.; Bajonero Cuervo, J.G.; Biondi, A.; Burgio, G.; Calvo, F.J.; de Jong, P.W.; López, S.N. The Pest Kill Rate of Thirteen Natural Enemies as Aggregate Evaluation Criterion of Their Biological Control Potential of Tuta absoluta. Sci. Rep. 2021, 11, 10756. [Google Scholar] [CrossRef]
- Thompson, M.N.; Medina, R.F.; Helms, A.M.; Bernal, J.S. Improving Natural Enemy Selection in Biological Control through Greater Attention to Chemical Ecology and Host-Associated Differentiation of Target Arthropod Pests. Insects 2022, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Vinson, S.B.; Iwantsch, G.F. Host Suitability for Insect Parasitoids. Annu. Rev. Entomol. 1980, 25, 397–419. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Hill, M.P.; Azrag, A.G.; Zalucki, M.P.; Mohamed, S.A. Disentangling Thermal Effects Using Life Cycle Simulation Modelling on the Biology and Demographic Parameters of Dolichogenidea gelechiidivoris, a Parasitoid of Tuta absoluta. J. Therm. Biol. 2022, 107, 103260. [Google Scholar] [CrossRef] [PubMed]
- Viggiani, G. The Role of Parasitic Hymenoptera in Integrated Pest Management in Fruit Orchards. Crop Prot. 2000, 19, 665–668. [Google Scholar] [CrossRef]
- Karimzadeh, R.; Sciarretta, A. Spatial Patchiness and Association of Pests and Natural Enemies in Agro-Ecosystems and Their Application in Precision Pest Management: A Review. Precis. Agric. 2022, 23, 1836–1855. [Google Scholar] [CrossRef]
- Kenis, M.; Du Plessis, H.; Van den Berg, J.; Ba, M.N.; Goergen, G.; Kwadjo, K.E.; Baoua, I.; Tefera, T.; Buddie, A.; Cafà, G. Telenomus remus, a Candidate Parasitoid for the Biological Control of Spodoptera frugiperda in Africa, Is Already Present on the Continent. Insects 2019, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Rusch, A.; Valantin-Morison, M.; Sarthou, J.-P.; Roger-Estrade, J. Biological Control of Insect Pests in Agroecosystems: Effects of Crop Management, Farming Systems, and Seminatural Habitats at the Landscape Scale: A Review. Adv. Agron. 2010, 109, 219–259. [Google Scholar]
- Cavaletto, G.; Faccoli, M.; Marini, L.; Spaethe, J.; Magnani, G.; Rassati, D. Effect of Trap Color on Captures of Bark-and Wood-Boring Beetles (Coleoptera; Buprestidae and Scolytinae) and Associated Predators. Insects 2020, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Wallis, D.R.; Shaw, P.W. Evaluation of Coloured Sticky Traps for Monitoring Beneficial Insects in Apple Orchards. New Zealand Plant Prot. 2008, 61, 328–332. [Google Scholar] [CrossRef]
- Abram, P.K.; Boivin, G.; Moiroux, J.; Brodeur, J. Behavioural Effects of Temperature on Ectothermic Animals: Unifying Thermal Physiology and Behavioural Plasticity. Biol. Rev. 2017, 92, 1859–1876. [Google Scholar] [CrossRef]
- Rakhshani, E.; Saeedifar, A. Seasonal Fluctuations, Spatial Distribution and Natural Enemies of Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in Iran. Entomol. Sci. 2013, 16, 17–25. [Google Scholar] [CrossRef]
- Neuenschwander, P. Searching Parasitoids of Dacus Oleae (Gmel.) (Dipt., Tephritidae) in South Africa. Z. Angew. Entomol. 1982, 94, 509–522. [Google Scholar] [CrossRef]
Trap Color | A. ironsidei Male Adults | A. ironsidei Crawlers | Encarsia lounsburyi | Encarsia spp. | Signiphora spp. | Myrmaridae | Trichogrammatidae | Aphelinidae | Eulophidae | Other Hymenoptera |
---|---|---|---|---|---|---|---|---|---|---|
Yellow | 20.40 ± 4.62 | 1.50 ± 0.43 | 0.70 ± 0.24 | 1.60 ± 0.45 a | 1.75 ± 0.39 a | 4.30 ± 0.72 a | 3.75 ± 0.94 bc | 0.70 ± 0.27 ab | 1.90 ± 0.44 | 14.73 ± 1.90 a |
Lime Green | 17.95 ± 4.18 | 0.75 ± 0.32 | 0.70 ± 0.21 | 0.80 ± 0.32 ab | 1.15 ± 0.32 ab | 2.75 ± 0.56 a | 4.55 ± 0.86 b | 1.05 ± 0.32 a | 2.35 ± 1.01 | 11.20 ± 0.64 ab |
Dark Green | 31.80 ± 11.11 | 1.25 ± 0.95 | 0.40 ± 0.20 | 0.40 ± 0.26 b | 1.35 ± 0.35 ab | 2.70 ± 0.52 a | 13.40 ± 2.80 a | 0.20 ± 0.09 b | 1.15 ± 0.32 | 12.33 ± 1.97 ab |
White | 33.40 ± 15.41 | 1.30 ± 0.53 | 0.20 ± 0.09 | 0.20 ± 0.12 b | 0.50 ± 0.17 b | 0.35 ± 0.15 b | 1.45 ± 0.46 c | 0.35 ± 0.13 ab | 2.25 ± 0.54 | 7.20 ± 1.31 b |
χ2 | 4.736 | 0.358 | 2.535 | 9.577 | 10.201 | 31.685 | 41.348 | 11.773 | 1.615 | 11.442 |
p | 0.1922 | 0.5499 | 0.2816 | 0.0083 * | 0.0169 * | <0.0001 * | <0.0001 * | 0.0082 * | 0.2034 | 0.0096 * |
Trap Color | A. ironsidei Male Adults | A. ironsidei Crawlers | Encarsia lounsburyi | Encarsia spp. | Signiphora spp. | Myrmaridae | Trichogrammatidae | Aphelinidae | Eulophidae | Other Hymenoptera |
---|---|---|---|---|---|---|---|---|---|---|
Yellow | 2.50 ± 0.53 | 0.00 ± 0.00 | 0.95 ± 0.27 | 0.35 ± 0.24 a | 1.75 ± 0.36 | 1.85 ± 0.67 a | 1.05 ± 0.43 | 2.05 ± 0.37 a | 4.65 ± 1.17 | 1.95 ± 0.40 |
Lime Green | 2.25 ± 0.48 | 0.00 ± 0.00 | 1.00 ± 0.23 | 0.00 ± 0.00 b | 1.75 ± 0.26 | 1.80 ± 0.32 a | 1.75 ± 0.46 | 2.75 ± 0.76 a | 4.05 ± 0.70 | 1.25 ± 0.32 |
Dark Green | 1.55 ± 0.39 | 0.00 ± 0.00 | 0.50 ± 0.21 | 0.00 ± 0.00 b | 1.00 ± 0.29 | 0.75 ± 0.24 a | 2.40 ± 0.85 | 1.50 ± 0.40 a | 3.15 ± 1.12 | 1.8 ± 0.39 |
White | 1.15 ± 0.42 | 0.00 ± 0.00 | 0.45 ± 0.14 | 0.00 ± 0.00 b | 1.00 ± 0.32 | 0.05 ± 0.05 b | 0.60 ± 0.26 | 0.40 ± 0.13 b | 3.00 ± 0.96 | 1.60 ± 0.39 |
χ2 | 3.406 | n/a | 5.018 | 207.675 | 5.372 | 18.430 | 7.843 | 24.176 | 1.434 | 0.655 |
p | 0.1821 | n/a | 0.0813 | <0.0001 * | 0.1465 | 0.0004 * | 0.0494 | <0.0001 * | 0.4882 | 0.5822 |
Trap Color | A. ironsidei Male Adults | A. ironsidei Crawlers | Encarsia lounsburyi | Encarsia spp. | Signiphora spp. | Myrmaridae | Trichogrammatidae | Aphelinidae | Eulophidae | Other Hymenoptera |
---|---|---|---|---|---|---|---|---|---|---|
Yellow | 61.1 ± 22.85 | 1.11 ± 3.86 a | 2.00 ± 0.82 | 1.40 ± 0.50 | 0.85 ± 0.28 | 1.55 ± 0.44 a | 0.80 ± 0.41 | 0.35 ± 0.17 | 0.3 ± 0.13 | 8.5 ± 2.15 |
Lime Green | 34.7 ± 7.08 | 5.6 ± 1.12 ab | 5.45 ± 3.77 | 3.70 ± 2.98 | 0.9 ± 0.30 | 1.15 ± 0.40 a | 1.05 ± 0.55 | 0.2 ± 0.09 | 0.55 ± 0.21 | 5.65 ± 1.31 |
Dark Green | 73.85 ± 26.73 | 3.1 ± 0.84 b | 0.75 ± 0.35 | 0.85 ± 0.51 | 0.75 ± 0.25 | 0.75 ± 0.26 a | 1 ± 0.37 | 0.1 ± 0.07 | 0.4 ± 0.18 | 4.4 ± 0.87 |
White | 27.95 ± 8.61 | 12.2 ± 3.97 a | 1.15 ± 1.00 | 0.80 ± 0.53 | 0.45 ± 0.15 | 0.00 ± 0.00 b | 0.5 ± 0.22 | 0.25 ± 0.12 | 0.65 ± 0.24 | 3.75 ± 1.14 |
χ2 | 6.889 | 12.590 | 6.470 | 2.836 | 0.636 | 1853.557 | 0.755 | n/a | n/a | 5.047 |
p | 0.0755 | 0.0018 * | 0.0909 | 0.2422 | 0.5939 | <0.0001 * | 0.3848 | n/a | n/a | 0.0802 |
Trap Color | A. ironsidei Male Adults | A. ironsidei Crawlers | Encarsia lounsburyi | Encarsia spp. | Signiphora spp. | Myrmaridae | Trichogrammatidae | Aphelinidae | Eulophidae | Other Hymenoptera |
---|---|---|---|---|---|---|---|---|---|---|
Yellow | 27.45 ± 6.62 | 0.50 ± 0.50 a | 89.65 ± 37.42 a | 0.00 ± 0.00 | 0.95 ± 0.26 a | 0.35 ± 0.15 ab | 3.90 ± 1.65 | 1.45 ± 0.55 | 0.45 ± 0.25 | 2.30 ± 0.78 |
Lime Green | 24.80 ± 4.94 | 0.50 ± 0.50 a | 101.45 ± 35.41 a | 0.00 ± 0.00 | 0.40 ± 0.17 b | 0.90 ± 0.32 a | 2.15 ± 1.06 | 1.15 ± 0.38 | 0.05 ± 0.05 | 1.25 ± 0.54 |
Dark Green | 19.00 ± 3.89 | 0.00 ± 0.00 b | 103.20 ± 43.74 a | 0.00 ± 0.00 | 0.40 ± 0.27 b | 0.25 ± 0.12 b | 2.35 ± 0.74 | 1.20 ± 0.47 | 0.10 ± 0.10 | 0.90 ± 0.57 |
White | 14.20 ± 3.15 | 2.10 ± 1.43 a | 17.00 ± 4.75 b | 0.00 ± 0.00 | 0.20 ± 0.12 b | 0.05 ± 0.05 b | 2.85 ± 1.11 | 0.30 ± 0.15 | 0.10 ± 0.10 | 0.75 ± 0.53 |
χ2 | 5.539 | 528.352 | 25.166 | n/a | 5.083 | 11.057 | 4.210 | 7.811 | 3.192 | 3.322 |
p | 0.1363 | <0.0001 * | <0.0001 * | n/a | 0.0242 * | 0.0114 * | 0.1219 | 0.0501 | 0.074 | 0.19 |
Pahala | Paauilo | |||
---|---|---|---|---|
Trap Color | September–November | December to February | September–November | December to February |
Yellow | r = −0.0945, p = 0.6918 | r = −0.1794, p = 0.4492 | r = 0.6487, p = 0.0020 * | r = 0.0026, p = 0.9913 |
Lime Green | r = −0.3077, p = 0.1870 | r = 0.4591, p = 0.0417 * | r = 0.4396, p = 0.0524 | r = 0.4420, p = 0.0510 |
Dark Green | r = −0.0909, p = 0.7030 | r = 0.3441, p = 0.1374 | r = 0.2501, p = 0.2876 | r = 0.0447, p = 0.8517 |
White | r = 0.4901, p = 0.0283 * | r = 0.1260, p = 0.5964 | r = 0.9326, p < 0.0001 * | r = 0.7502, p = 0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acebes-Doria, A.L.; Aigbedion-Atalor, P.O. Exploiting Trap Type and Color for Monitoring Macadamia Felted Coccid Acanthococcus ironsidei (Williams) and Associated Parasitic Wasps in Macadamia Orchards in Hawai’i. Insects 2025, 16, 149. https://doi.org/10.3390/insects16020149
Acebes-Doria AL, Aigbedion-Atalor PO. Exploiting Trap Type and Color for Monitoring Macadamia Felted Coccid Acanthococcus ironsidei (Williams) and Associated Parasitic Wasps in Macadamia Orchards in Hawai’i. Insects. 2025; 16(2):149. https://doi.org/10.3390/insects16020149
Chicago/Turabian StyleAcebes-Doria, Angelita L., and Pascal O. Aigbedion-Atalor. 2025. "Exploiting Trap Type and Color for Monitoring Macadamia Felted Coccid Acanthococcus ironsidei (Williams) and Associated Parasitic Wasps in Macadamia Orchards in Hawai’i" Insects 16, no. 2: 149. https://doi.org/10.3390/insects16020149
APA StyleAcebes-Doria, A. L., & Aigbedion-Atalor, P. O. (2025). Exploiting Trap Type and Color for Monitoring Macadamia Felted Coccid Acanthococcus ironsidei (Williams) and Associated Parasitic Wasps in Macadamia Orchards in Hawai’i. Insects, 16(2), 149. https://doi.org/10.3390/insects16020149