Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Volatiles Released by PaP
2.2. KEGG Functional Annotation Analysis of Z3H and Z3HA Pathways
2.3. Identifying Insect-Resistant Endogenous Hormones in PaP
2.4. Activity of Defense Substances in the PaP Response to MeJA Treatment
2.5. Collection and Identification of Volatiles from Leaves of PaP After MeJA Treatment
2.6. Choices Made by ALB Adults for Branches and Leaves of PaP After Treatment with Different Concentrations of MeJA Aqueous Solutions
2.7. Oviposition of ALB Females on Trees Treated with Different Concentrations of MeJA Aqueous Solutions in the Field
2.8. Statistics
3. Results
3.1. Comparisons of the Quantities of Z3HA and Z3H
3.2. Relationships Between Z3HA, Z3H, and Synthesis Pathways of SA, JA, MeSA, and MeJA
3.3. Quantity of SA, JA, MeSA, and MeJA in Healthy and ALB-Infested Plants
3.4. Activity of Defense Proteases After MeJA Treatment
3.5. Quantity of Attractive Volatiles Released from PaP After MeJA Treatment
3.6. Feeding of ALB Adults on Branches and Leaves of PaP After MeJA Treatment Compared with Untreated Control and Mechanical Injury of PaP
3.7. Analysis of ALB Oviposition on MeJA-Treated PaP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haack, R.A.; Herard, F.; Sun, J.H.; Turgeon, J.J. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: A worldwide perspective. Annu. Rev. Entomol. 2010, 55, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.R.; Zhou, Q.; Hall, L.; Myrick, A.; Hoover, K.; Shields, K.; Baker, T.C. Olfactory sensory neurons of the Asian longhorned beetle, Anoplophora glabripennis, specifically responsive to its two aggregation-sex pheromone components. J. Chem. Ecol. 2018, 44, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.J.; Cao, D.D.; Su, Z.; Wei, J.R. The attractive host volatiles can enhance oviposition of on a non-host tree. Pest Manag. Sci. 2023, 79, 3538–3547. [Google Scholar] [CrossRef]
- Yan, S.Y.; Zhang, G.; Liu, J.F.; Su, Z.; Wei, J.R. Anoplophora glabripennis: Host choice, oviposition and performance of new hatched larvae on ‘resistant’ poplar species. J. Appl. Entomol. 2022, 146, 98–105. [Google Scholar] [CrossRef]
- Shao, P.P.; Yang, B.J.; Su, Z.; Song, Z.X.; Wang, Z.; Liu, Y.T.; Wei, J.R. Preference of Anoplophora glabripennis to Populus alba var. pyramidalis and Elaeagnus angustifolia. For. Res. 2023, 36, 122–128, (In Chinese with English Summary). [Google Scholar] [CrossRef]
- Rosner, S.; Hannrup, B. Resin canal traits relevant for constitutive resistance of Norway spruce against bark beetles: Environmental and genetic variability. For. Ecol. Manag. 2004, 200, 77–87. [Google Scholar] [CrossRef]
- Malka, O.; Easson, M.L.A.E.; Paetz, C.; Götz, M.; Reichelt, M.; Stein, B.; Luck, K.; Stanišić, A.; Juravel, K.; Santos-Garcia, D.; et al. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 2020, 16, 1420–1426. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Z.; Yang, Z.; Han, H.; Wang, S.; Xu, H.; Yang, X.; Yang, F.; Wu, Q.; Xie, W.; et al. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 2021, 184, 1693–1705. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Liang, X.; Wu, C.L.; Liu, X.Q.; Shui, J.; Zhang, Y.; Wang, Y.; Chen, Q. Methyl jasmonate-treated pepper (Capsicum annuum L.) depresses performance and alters activities of protective, detoxification and digestive enzymes of green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)]. J. Insect Sci. 2022, 22, 11. [Google Scholar] [CrossRef]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Talk, G.I.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Kerstner, D.O.F.; Oliveira, S.L.; Garda, B.J. Mechanism of action, sources, and application of peroxidases. Food Res. Int. 2021, 143, 11–26. [Google Scholar] [CrossRef]
- Farmer, E.E.; Ryan, C.A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 1990, 87, 7713–7716. [Google Scholar] [CrossRef] [PubMed]
- Dar, T.A.; Uddin, M.; Khan, M.M.A.; Hakeem, K.R.; Jaleel, H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 2015, 115, 49–57. [Google Scholar] [CrossRef]
- Ruan, J.J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.W.; Zhang, T.Y.; Liu, Y.Y.; Liu, L.J. Botrytis cinerea-induced F-box protein 1 enhances disease resistance by inhibiting AO/OX-mediated jasmonic acid catabolismin Arabidopsis. Mol. Plant 2024, 17, 297–311. [Google Scholar] [CrossRef]
- Yusuf, M.; Hayat, S.; Alyemeni, M.N.; Fariduddin, Q.; Ahmad, A. Salicylic acid: Physiological roles in plants. In Salicylic Acid; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Igor, P.; Volodymyr, K.; Eric, R. Salicylic Acid Binding Proteins (SABPs): The hidden forefront of salicylic acid signaling. Int. J. Mol. Sci. 2019, 20, 4377. [Google Scholar] [CrossRef]
- Mageroy, M.H.; Christiansen, E.; Långström, B.; Borg-Karlson, A.K.; Solheim, H.; Björklund, N.; Zhao, T.; Schmidt, A.; Fossdal, C.G.; Krokene, P.; et al. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. Plant Cell Environ. 2020, 43, 420–430. [Google Scholar] [CrossRef]
- Kim, J.; Felton, G.W. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013, 20, 273–285. [Google Scholar] [CrossRef]
- Huffaker, A. Plant elicitor peptides in induced defense against insects. Curr. Opin. Insect Sci. 2015, 9, 44–50. [Google Scholar] [CrossRef]
- Lou, Y.; Hu, L.; Li, J. Herbivore-induced defenses in rice and their potential application in rice planthopper management. In Rice Planthoppers; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular action of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 569–589. [Google Scholar] [CrossRef]
- Thaler, J.S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 1999, 399, 686–688. [Google Scholar] [CrossRef]
- Lundborg, L.; Sampedro, L.; Borg-Karlson, A.K.; Zas, R. Effects of methyl jasmonate on the concentration of volatile terpenes in tissues of maritime pine and monterey pine and its relation to pine weevil feeding. Trees-Struct. Funct. 2019, 33, 53–62. [Google Scholar] [CrossRef]
- Bayram, A.; Tong, A. Methyl jasmonate affects population densities of phytophagous and entomophagous insects in wheat. Appl. Ecol. Environ. Res. 2018, 16, 181–198. [Google Scholar] [CrossRef]
- Aratani, Y.; Uemura, T.; Hagihara, T.; Matsui, K.; Toyota, M. Green leaf volatile sensory calcium transduction in Arabidopsis. Nat. Commun. 2023, 14, 6236. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, Y.; He, L.; Huang, F.; Zhang, D.; Wang, Y.; Wei, X.; Han, M.; Deng, H.; Luo, L.; et al. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature 2023, 622, 139–148. [Google Scholar] [CrossRef]
- Devos, K.M.; Ma, J.; Pontaroli, A.C.; Pratt, L.H.; Bennetzen, J.L. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc. Natl. Acad. Sci. USA 2005, 102, 19243–19248. [Google Scholar] [CrossRef]
- Bittner, S. When quinones meet amino acids: Chemical, physical and biological consequences. Amino Acids 2006, 30, 205–224. [Google Scholar] [CrossRef]
- Farmer, E.E. Surface-to-air signals. Nature 2001, 411, 854–856. [Google Scholar] [CrossRef]
- Liechti, R.; Farmer, E.E. The jasmonate pathway. Science 2002, 296, 1649–1650. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, T.F.S.; Stout, M.J.; Sant’Ana, J. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Manag. Sci. 2019, 75, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, P.; Hu, Y.; Chen, C.; Liu, Q.; Guan, P.; Zhang, J. Genome-wide analysis of the universal stress protein A gene family in Vitis and expression in response to abiotic stress. Plant Physiol. Biochem. 2021, 165, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, J.; Dicke, M.; Posthumus, M.A. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 1994, 20, 1329–1354. [Google Scholar] [CrossRef]
- Chen, L.; Song, J.; Wang, J.; Ye, M.; Deng, Q.Q.; Wu, X.B.; Wu, X.Y.; Ren, B. Effects of methyl jasmonate fumigation on the growth and detoxification ability of Spodoptera litura to xanthotoxin. Insects 2023, 14, 145. [Google Scholar] [CrossRef]
Volatiles | Concentration per Injection Volume (ng/µL) | ||
---|---|---|---|
Healthy (Control) | After Mechanical Injury | After ALB Infestation | |
Z3HA | 1159.64 ± 3.27 a | 577.82 ± 2.03 b | 313.26 ± 3.11 c |
Z3H | 2049.12 ± 2.05 a | 241.89 ± 2.18 c | 521.81 ± 2.01 b |
Phytohormone | Healthy or Infested by ALB | Quantity (ng/g) | Significance Level |
---|---|---|---|
SA | infested | 17.79 ± 0.23 | p < 0.01 |
healthy | 28.47 ± 0.16 | ||
JA | infested | 0.65 ± 0.09 | p < 0.05 |
healthy | 0.31 ± 0.03 | ||
MeSA | infested | 2.13 ± 0.14 | p > 0.05 |
healthy | 2.49 ± 0.03 | ||
MeJA | infested | 1.99 ± 0.13 | p = 0.010 |
healthy | 0.66 ± 0.07 |
Chemicals | Control | 10−3 mol/L | 10−4 mol/L | 10−5 mol/L | 10−6 mol/L |
---|---|---|---|---|---|
Z3HA | 275.92 ± 1.43 a | 210.54 ± 2.01 c | 37.39 ± 1.50 e | 218.17 ± 1.96 b | 172.19 ± 2.01 d |
Z3H | 362.54 ± 2.17 b | 34.11 ± 1.50 d | 17.15 ± 1.37 e | 400.49 ± 2.25 a | 329.09 ± 10.57 c |
Gender | Treatment | Number of ALB Feeding | Feeding Area (mm2) | Food Intake (g) | Insect Frass in 48 h (mg) | Damage Level (D) |
---|---|---|---|---|---|---|
Female | Untreated | 6.33 ± 1.53 a | 9.00 ± 2.01 ab | 0.52 ± 0.06 a | 15.06 ± 0.41 a | 7.73 |
Mechanical injury | 6.67 ± 2.89 a | 10.33 ± 2.51 a | 0.47 ± 0.18 a | 11.40 ± 0.83 a | 7.72 | |
10−3 | 7.33 ± 5.15 a | 5.00 ± 1.00 bc | 0.24 ± 0.08 ab | 12.09 ± 3.98 a | 6.17 | |
10−4 | 3.00 ± 0.00 a | 3.67 ± 0.58 c | 0.08 ± 0.01 b | 7.56 ± 3.07 a | 3.58 | |
10−5 | 3.67 ± 2.52 a | 3.00 ± 1.00 c | 0.09 ± 0.06 b | 8.49 ± 1.42 a | 3.81 | |
10−6 | 2.67 ± 0.58 a | 3.33 ± 0.57 c | 0.11 ± 0.01 b | 11.11 ± 1.78 a | 4.31 | |
Male | Untreated | 10.33 ± 1.20 a | 16.67 ± 2.60 a | 0.23 ± 0.04 a | 4.72 ± 1.09 a | 7.99 |
Mechanical injury | 4.00 ± 1.15 b | 8.33 ± 1.33 a | 0.12 ± 0.02 a | 6.42 ± 0.30 a | 4.72 | |
10−3 | 4.67 ± 1.85 b | 7.67 ± 3.84 a | 0.06 ± 0.02 b | 4.44 ± 2.51 a | 4.56 | |
10−4 | 1.33 ± 0.33 b | 10.00 ± 2.52 a | 0.06 ± 0.01 b | 5.83 ± 2.68 a | 4.31 | |
10−5 | 4.00 ± 1.53 b | 8.33 ± 0.33 a | 0.08 ± 0.05 ab | 3.28 ± 0.96 a | 3.95 | |
10−6 | 3.67 ± 1.45 b | 5.67 ± 3.18 a | 0.07 ± 0.03 b | 4.24 ± 0.80 a | 3.41 |
Different Concentrations of MeJA (mol/L) | Notch Groove | Oviposition Rate (%) | Larval Survival Rate (%) | Larval Weight (mg) | Comprehensive Evaluation Index (I) |
---|---|---|---|---|---|
0 | 29.00 ± 4.00 a | 71.67 ± 6.01 a | 49.33 ± 5.81 a | 43.00 ± 6.00 a | 10.25 |
10−3 | 11.33 ± 1.76 bc | 72.22 ± 10.23 a | 27.21 ± 2.26 bc | 24.00 ± 5.00 c | 2.23 |
10−4 | 9.33 ± 1.33 bc | 68.73 ± 3.61 a | 22.07 ± 4.16 c | 33.00 ± 3.00 b | 1.42 |
10−5 | 6.67 ± 2.18 c | 66.21 ± 4.52 a | 37.22 ± 3.89 b | 36.00 ± 3.00 b | 1.63 |
10−6 | 16.33 ± 3.66 b | 73.20 ± 10.69 a | 21.16 ± 1.96 c | 44.00 ± 5.00 a | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, P.; Luo, J.; Zhang, R.; Liu, J.; Cao, D.; Su, Z.; Wei, J. Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae). Insects 2025, 16, 153. https://doi.org/10.3390/insects16020153
Shao P, Luo J, Zhang R, Liu J, Cao D, Su Z, Wei J. Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae). Insects. 2025; 16(2):153. https://doi.org/10.3390/insects16020153
Chicago/Turabian StyleShao, Pengpeng, Jiayu Luo, Rui Zhang, Jianfeng Liu, Dandan Cao, Zhi Su, and Jianrong Wei. 2025. "Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae)" Insects 16, no. 2: 153. https://doi.org/10.3390/insects16020153
APA StyleShao, P., Luo, J., Zhang, R., Liu, J., Cao, D., Su, Z., & Wei, J. (2025). Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae). Insects, 16(2), 153. https://doi.org/10.3390/insects16020153