Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mite and Beetle Cultures
2.2. Preparation and Evaluation of Bioassays
2.3. Controlled Atmosphere Treatments
2.3.1. CO2 Application and Quantification
2.3.2. Reduced O2 Treatment
2.3.3. Ozone Generation and Gas Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CA | controlled atmosphere |
MB | methyl bromide |
GC-MS | gas chromatography-mass spectrometry |
LT | lethal time |
References
- Environmental Protection Agency (EPA). Final Rulemaking: The Critical Use Exemption from the Phase-Out of Methyl Bromide. Form of Citation in Text; EPA 2006. Available online: http://www.epa.gov/spdpublc/mbr/ (accessed on 30 January 2008).
- Phillips, T.W.; Throne, J.E. Biorational Approaches to Managing Stored-Product Insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Fields, P.G.; White, N.D.G. Alternatives to methyl bromide treatments for stored product and quarantine insects. Ann. Rev. Entomol. 2002, 47, 331–359. [Google Scholar] [CrossRef] [PubMed]
- Thoms, E.; Phillips, T.W. Fumigation, Chapter 20. In Mallis Handbook of Pest Control, 9th ed.; Hedges, S., Ed.; GIE Inc.: Valley View, OH, USA, 2004; pp. 1165–1261. [Google Scholar]
- Adler, C.; Corinth, H.G.; Reichmuth, C. Modified Atmospheres. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 105–146. [Google Scholar]
- Mitcham, E.J.; Martin, T.A.; Zhou, S. The mode of action of insecticidal controlled atmospheres. Bull. Entomol. Res. 2006, 96, 213–222. [Google Scholar] [CrossRef]
- Sen, F.; Meyvaci, K.B.; Turanli, F.; Aksoy, U. Effects of short-term controlled atmosphere treatment at elevated temperature on dried fig fruit. J. Stored Prod. Res. 2010, 46, 28–33. [Google Scholar] [CrossRef]
- Donahaye, E.J.; Navarro, S.; Rindner, M.; Azrieli, A. The combined influence of temperature and modified atmospheres on Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 1996, 32, 225–232. [Google Scholar] [CrossRef]
- Zelac, R.E.; Cromroy, H.L.; Bolch, W.E.; Dunavant, B.G.; Bevis, H.A. Inhaled ozone as a mutagen. I. Chromosome aberrations induced in Chinese hamster lymphocytes. Environ. Res. 1971, 4, 262–282. [Google Scholar] [CrossRef]
- De Lima, C.F.P. Air tight storage: Principles and practice. In Food Preservation by Modified Atmospheres; Calderon, M., Barkai-Golan, R., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 9–19. [Google Scholar]
- Chiappini, E.; Molinari, P.; Cravedi, P. Mortality of Tribolium confusum J. du Val (Coleoptera: Tenebrionidae) in controlled atmospheres at different oxygen percentages. J. Stored Prod. Res. 2009, 45, 10–13. [Google Scholar] [CrossRef]
- Zakrys, P.I.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Consumer acceptability and physiochemical characteristics of modified atmosphere packed beef steaks. Meat Sci. 2009, 81, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, J.; Castañé, C.; Alomar, O.; Pons, M.J.; Gabarra, R. Modified atmosphere packaging (MAP) as an alternative measure for controlling ten pests that attack processed food products. J. Stored Prod. Res. 2009, 45, 91–96. [Google Scholar] [CrossRef]
- Banks, H.J.; Annis, P.C. Comparative advantages of high CO2 and low O2 types of controlled atmospheres for grain storage. In Food Preservation by Modified Atmospheres; Calderon, M., Barkai-Golan, R., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 93–122. [Google Scholar]
- Annis, P.C. Towards rational controlled atmospheres dosage schedulees: A review of current knowledge. In Proceedings of the 4th International Working Conference on Stored-Products Protection, Tel Aviv, Israel, 21–26 September 1986; Donahaye, E., Navarro, S., Eds.; pp. 128–148.
- Krishnamurthy, T.S.; Spratt, E.C.; Bell, C.H. Toxicity of carbon dioxide to adult beetles in low oxygen atmospheres. J. Stored Prod. Res. 1986, 22, 145–151. [Google Scholar] [CrossRef]
- Mbata, G.N.; Ramaswamy, S.B.; Reichmuth, C. Comparative effect of short term exposures of Callosobruchus subinnotatus to carbon dioxide, nitrogen, or low temperature on behavior and fecundity. Entomol. Exp. Appl. 1998, 89, 243–248. [Google Scholar] [CrossRef]
- Finkelman, S.; Navarro, S.; Rindner, M.; Refael, D. Effect of low pressure on the survival of Trogoderma granarium Everts, Lasioderma serricorne (F.) and Oryzaephilus surinamensis (L.) at 30 °C. J. Stored Prod. Res. 2006, 42, 23–30. [Google Scholar] [CrossRef]
- Mason, L.J.; Woloshuk, C.P.; Maier, D.E. Efficacy of ozone to control insects, molds and mycotoxins. In Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Nicosia, Cyprus, 21–26 April 1996; Donahaye, E.J., Navarro, S., Varnava, A., Eds.; Printco Ltd.: Nicosia, Cyprus, 1997; pp. 665–670. [Google Scholar]
- Marriot, N.G.; Schilling, M.W. Dry Cured Pork Research Review White paper. In Proceedings of the National Country Ham Association Annual Meeting, Morehead City, NC, USA, 2–4 April 2004; pp. 1–62.
- Arbogast, R.T. Beetles: Coleoptera. In Ecology and Management of Food-Industry Pests; Gorham, J.R., Ed.; AOAC: Rockville, MD, USA, 1991; pp. 122–131. [Google Scholar]
- Rajendran, S.; Hajira Parveen, K.M. Insect infestation in stored animal products. J. Stored Prod. Res. 2005, 41, 1–30. [Google Scholar] [CrossRef]
- Boczek, J. Reproduction biology of Tyrophagus putrescentiae (Schr.) (Acarina: Acaridae). In Proceedings of the First International Working Conference on Stored-Product Entomology, Savannah, GA, USA, 7–11 October 1974; Brady, E.U., Brower, J.H., Hunter, P.E., Jay, E.G., Lum, P.T.M., Lund, H.O., Mullen, M.A., Davis, R., Eds.; pp. 154–159.
- Kells, S.A.; Mason, L.J.; Maier, D.E.; Woloshuk, C.P. Efficacy and fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 2001, 37, 371–382. [Google Scholar] [CrossRef]
- Zhao, Y.; Abbar, S.; Phillips, T.W.; Schilling, M.W. Phosphine fumigation and residues in dry-cured ham in commercial applications. Meat Sci. 2015, 107, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rentfrow, G.; Hanson, D.J.; Schilling, M.W.; Mikel, W.B. The Use of Methyl Bromide to Control Insects in Country Hams in the Southeastern United States. Available online: http://www2.ca.uky.edu/agcomm/pubs/asc/asc171/asc171.pdf (accessed on 10 June 2016).
- Abbar, S.; Amoah, B.; Schilling, M.W.; Phillips, T.W. Efficacy of selected food-safe compounds to prevent infestation of the ham mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) on southern dry cured hams. Pest Manag. Sci. 2016, 72, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Phillips, T.W. Mass-Rearing of the redlegged ham beetle, Necrobia rufipes De Geer (Coleoptera: Cleridae) for laboratory research. J. Stored Prod. Res. 2010, 46, 38–42. [Google Scholar] [CrossRef]
- Marriott, N.G.; Ockerman, H.W. The Ultimate Guide to Country Ham: An American Delicacy; Brightside Press: Radford, VA, USA, 2004. [Google Scholar]
- Mbata, G.N.; Phillips, T.W. Effects of temperature and exposure time on mortality of stored-product insects exposed to low pressure. J. Econ. Entomol. 2001, 94, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Donahaye, E.; Rindner, M.; Azrieli, A.; Dias, R. Application of gastight storage in the tropics. In Urban and Stored Product Entomology, Proceedings of the XXI International Congress of Entomology, Book II, Foz do Iguassu, Brazil, 20–26 August 2000; Gazzoni, D.L., Ed.; p. 1022.
- Childs, D.P.; Overby, J.E. Mortality of the cigarette beetles in high-carbon dioxide atmospheres. J. Econ. Entomol. 1983, 76, 456–544. [Google Scholar] [CrossRef]
- Aliniazee, M.T. The effect of carbon dioxide gas alone or in combination on the mortality of Tribolium castaneum (Herbst) and T. confusum du Val (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 1971, 7, 249–252. [Google Scholar]
- Annis, P.C.; Morton, R. The acute mortality effects of carbon dioxide on various life stages of Sitophilus oryzae. J. Stored Prod. Res. 1997, 33, 115–124. [Google Scholar] [CrossRef]
- Newton, J. Carbon dioxide as a fumigant to replace the methyl bromide in the control of insects and mites damaging stored products and artifacts. In Proceedings of the 1st Conference on Insect Pest in the Urban Environment, Cambridge, UK, 30 June–3 July 1993; Wildey, K.B., Robinson, W.H., Eds.; pp. 329–338.
- Pagani, M.; Ciampitti, M. Mite control on seasoned pork products by modified atmospheres preliminary tests. In Proceedings of the 5th International Working Conference on Stored-Product Protection, Bordeaux, France, 9–14 September 1990; Fleurat-Lessard, F., Ducom, P., Eds.; 1991; Volume II, pp. 887–891. [Google Scholar]
- Hughes, T.E. The respiration of Tyroglyphus farinae. J. Exp. Biol. 1943, 20, 1–5. [Google Scholar]
- Erdman, H.E. Ozone toxicity during ontogeny of two species of flour beetle, Tribolium confusum and T. castaneum. Env. Entomol. 1980, 9, 16–17. [Google Scholar] [CrossRef]
- Leesch, J.G. The mortality of stored-product insects following exposure to gaseous ozone at high concentrations. In Advances in Stored Product Protection, Proceedings of the 8th International Working Conference on Stored-Product Protection, York, UK, 22–26 July 2002; Credland, P.F., Armitage, D.M., Bell, C.H., Cogan, P.M., Highley, E., Eds.; CAB International: Oxon, UK, 2003; pp. 827–831. [Google Scholar]
- Mendez, F.; Maierb, D.E.; Masonc, L.J.; Woloshuka, C.P. Penetration of ozone into columns of stored grains and effects on chemical composition and processing performance. J. Stored Prod. Res. 2003, 39, 33–44. [Google Scholar] [CrossRef]
- Jaffe, L.S. The biological effects of ozone on man and animals. Am. Ind. Hyg. Assoc. J. 1967, 28, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Mitcham, E.J.; Zhou, S.; Bikoba, V. Controlled atmospheres for quarantine control of three pests of table grape. J. Econ. Entomol. 1997, 90, 1360–1370. [Google Scholar] [CrossRef]
- Sekhon, R.K.; Schilling, M.W.; Phillips, T.W.; Aikins, R.M.J.; Hasan, M.M.; Nannapaneni, R.; Mike, W.B. Effects of carbon dioxide and ozone treatments on the volatile composition and sensory quality of dry cured ham. J. Food Sci. 2010, 75, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, J.; Castañé, C.; Alomar, O.; Pons, M.J.; Gabarra, R. The use of carbon dioxide at high pressure to control nine stored-product pests. J. Stored Prod. Res. 2010, 46, 228–233. [Google Scholar] [CrossRef]
Stage | Time (h) | Air Control | 62.5% CO2 | 75.1% CO2 |
---|---|---|---|---|
Eggs | 24 | 0 | 26.7 ± 3.3 | 26.7 ± 3.3 |
48 | 3.3 ± 3.3 | 30.0 ± 5.8 | 36.7 ± 3.3 | |
72 | 0 | 50.0 ± 0 | 46.7 ± 6.7 | |
96 | 0 | 80.0 ± 10.0 | 100 | |
144 | 6.7 ± 3.3 | 100 | 100 | |
Larvae * | 96 | 0 | 72.1 ± 5.8 | 75.2 ± 3.3 |
144 | 0 | 60.0 ± 5.8 | 90.0 ± 0 | |
Pupae | 24 | 3.3 ± 3.3 | 26.7 ± 14.6 | 26.7 ± 3.3 |
48 | 0 | 40.0 ± 5.8 | 36.7 ± 3.3 | |
72 | 0 | 56.7 ± 3.3 | 46.7 ± 6.7 | |
96 | 10.0 ± 0 | 30.0 ± 10.1 | 16.7 ± 3.3 | |
144 | 13.3 ± 8.8 | 93.3 ± 3.3 | 100 | |
Adults | 24 | 13.3 ± 6.7 | 33.3 ± 6.7 | 66.7 ± 3.3 |
48 | 3.3 ± 3.3 | 56.7 ± 3.3 | 83.3 ± 6.7 | |
72 | 0 | 66.7 ± 17.7 | 93.3 ± 6.7 | |
96 | 6.7 ± 6.7 | 86.7 ± 6.7 | 100 | |
144 | 0 | 100 | 100 |
CO2 % Mean ± SE | Stages | N | LT50 h (95% Fiducial Limits) | LT99 h (95% Fiducial Limits) | Slope SE | Intercept ± SE | χ2 (df) (p) |
---|---|---|---|---|---|---|---|
Beetles at 62.5% | Eggs | 150 | 53.13 (43.62–63.03) | 305.12 (202.69–643.02) | 13.19 ± 0.87 | 0.24 ± 5.19 | 15.85 (df = 13) (p = 0.26) |
Larvae | 150 | 110.49 (92.90–142.10) | 275.38 (188.69–903.31) | 10.23 ± 2.10 | 50.19 ± 8.74 | 25.88 (df = 13) (p < 0.02) | |
Pupae | 150 | 50.51 (39.61–61.33) | 214.16 (149.44–424.77) | 13.73 ± 0.84 | −5.98 ± 3.90 | 13.28 (df = 13) (p = 0.43) | |
Adults | 150 | 30.22 (24.98–49.34) | 209.58 (129.38–703.56) | 11.65 ± 1.39 | −4.59 ± 9.67 | 21.99 (df = 13) (p < 0.05) | |
Beetles at 75.1% | Eggs | 150 | 51.34 (41.89–60.98) | 298.11 (197.99–631.03) | 13.34 ± 0.57 | −2.96 ± 2.70 | 15.79 (df = 13) (p = 0.26) |
Larvae | 150 | 95.50 (88.25–103.30) | 161.37 (140.19–208.04) | 9.13 ± 1.27 | 46.96 ± 6.60 | 13.76 (df = 13) (p = 0.39) | |
Pupae | 150 | 56.06 (44.83–68.18) | 437.73 (259.24–1237.00) | 14.94 ± 0.53 | −6.42 ± 2.32 | 12.99 (df = 13) (p = 0.45) | |
Adults | 150 | 17.08 (6.57–25.11) | 150.70 (95.46–493.28) | 23.32 ± 5.24 | −128.45 ± 46.64 | 9.967 (df = 13) (p = 0.67) | |
Mites at 49.2% | Eggs | 170 | 19.61 (9.42–30.08) | 116.72 (65.94–502.12) | 8.69 ± 2.14 | −3.56 ± 17.54 | 48.95 (df = 15) (p < 0.01) |
Mobile Stages | 360 | 30.86 (18.83–44.95) | 312.45 (158.82–1436.00) | 5.69 ± 0.68 | −4.33 ± 9.67 | 77.17 (df = 16) (p < 0.01) | |
Mites at 62.5% | Eggs | 170 | 20.98 (12.98–29.03) | 114.93 (72.86–289.09) | 8.76 ± 2.03 | −3.07 ± 16.46 | 29.95 (df = 15) (p < 0.01) |
Mobile Stages | 360 | 20.13 (13.37–27.53) | 141.89 (87.31–347.88) | 5.06 ± 0.96 | −8.20 ± 15.55 | 54.62 (df = 16) (p < 0.01) |
Time (h) | Stages Assayed in Treatment Chambers with a Given % Carbon Dioxide | ||||||
---|---|---|---|---|---|---|---|
Air Control | 12.0% | 19.3% | 35.0% | 49.2% | 62.5% | 75.1% | |
Eggs | |||||||
24 | 6.7 ± 6.7 | 6.7 ± 3.3 | 6.7 ± 3.3 | 53.3 ± 3.3 | 63.3 ± 8.8 | 53.3 ± 8.8 | 50.0 ± 17.3 |
48 | 10.0 ± 5.8 | 3.3 ± 3.3 | 13.3 ± 3.3 | 66.7 ± 8. | 96.7 ± 3.3 | 93.3 ± 3.3 | 100 |
72 | 6.7 ± 3.3 | 6.7 ± 3.3 | 13.3 ± 8.8 | 83.3 ± 6.7 | 100 | 100 | 96.7 ± 3.3 |
96 | 3.3 ± 3.3 | 6.7 ± 3.3 | 6.7 ± 3.3 | 76.7 ± 8.8 | 90.0 ± 10.0 | 90.0 ± 5.8 | na |
144 | 5.0 ± 4.0 | 15.0 ± 4.1 | 25.0 ± 4.1 | 95.0 ± 4.1 | 100 | 100 | na |
Mobile Stages | |||||||
24 | 18.3 ± 3.3 | 23.2 ± 4.4 | 20.0 ± 7.7 | 18.3 ± 4.4 | 16.7 ± 1.7 | 25.0 ± 2.9 | 70.0 ± 2.9 |
48 | 15.0 ± 5.8 | 18.3 ± 4.4 | 23.3 ± 3.3 | 35.0 ± 5.8 | 43.3 ± 7.3 | 95.0 ± 2.9 | 83.3 ± 6.0 |
72 | 18.3 ± 4.4 | 18.3 ± 3.3 | 20.0 ± 2.9 | 41.7 ± 3.3 | 88.3 ± 1.7 | 95.0 ± 5.0 | 91.7 ± 3.3 |
94 | 25.0 ± 2.9 | 25.0 ± 2.9 | 15.0 ± 2.9 | 25.0 ± 2.9 | 98.3 ± 1.7 | 100 | na |
144 | 13.3 ± 4.4 | 11.7 ± 6.0 | 20.0 ± 5.0 | 36.7 ± 6.0 | 100 | 100 | na |
Species/Stage | Exposure Times (h) | ||||||
---|---|---|---|---|---|---|---|
0 | 24 | 48 | 72 | 96 | 120 | 144 | |
N. rufipes | |||||||
Eggs | 7.3 ± 3.3 | 33.3 ± 3.3 | 36.6 ± 16.6 | 60.0 ± 16.6 | 63.3 ± 12.5 | 93.3 ± 7.5 | na |
Larvae | 0 | 13.3 ± 6.6 | 10.0 ± 6.6 | 23.3 ± 1.3 | 86.7 ± 7.5 | 100 | na |
Pupa | 0 | 46.7 ± 3.3 | 53.3 ± 12.5 | 73.3 ± 3.3 | 86.7 ± 5.0 | 93.3 ± 2.5 | na |
Adults | 0.7 ± 0.1 | 53.3 ± 7.5 | 73.3 ± 11.3 | 93.3 ± 3.3 | 100 | 100 | na |
T. putrescentiae | |||||||
Eggs | 3.3 ± 3.3 | 6.6 ± 3.3 | 10.0 ± 6.6 | 3.3 ± 3.3 | 15.1 ± 3.3 | 63.3 ± 3.3 | 96.3 ± 3.3 |
Mobile Stages | 21.4 ± 3.3 | 36.7 ± 6.6 | 41.1 ± 5.0 | 96.0 ± 3.3 | 91.3 ± 6.6 | 96.0 ± 1.6 | 100 |
Life Stages | N | LT50 h (95% Fiducial Limits) | LT99 h (95% Fiducial Limits) | Slope ± SE | Intercept ± SE | χ2 (df) (p) |
---|---|---|---|---|---|---|
Beetle | ||||||
Eggs | 150 | 50.11 (20.08–78.48) | 621.68 (220.90–NA) | 11.68 ± 1.17 | −1.79 ± 5.37 | 33.72 (df = 13) (p < 0.01) |
Larvae | 150 | 68.41 (47.63–98.22) | 230.69 (137.56–1740.00) | 10.89 ± 0.91 | 10.59 ± 3.91 | 54.85 (df = 13) (p < 0.01) |
Pupae | 150 | 32.153 (19.15–42.16) | 399.35 (214.07–1796.00) | 10.79 ± 0.69 | −2.87 ± 3.65 | 12.38 (df = 13) (p = 0.50) |
Adults | 150 | 25.04 (16.91–31.36) | 123.28 (88.37–240.55) | 9.10 ± 0.67 | −2.53 ± 4.08 | 14.19 (df = 13) (p = 0.36) |
Mites | ||||||
Eggs | 180 | 106.80 (75.80–217.86) | 383.79 (199.43–NA) | 14.15 ± 1.67 | 16.45 ± 5.81 | 89.00 (df = 16) (p < 0.01) |
Mobile Stages | 360 | 36.71 (25.53–46.20) | 184.24 (125.65–403.81) | 6.82 ± 0.48 | −24.64 ± 5.84 | 49.04 (df = 16) (p < 0.01) |
Stage | Exposure (h) | Ozone Concentrations | ||
---|---|---|---|---|
66 ppm | 117 ppm | 155 ppm | ||
Eggs | 0 | 6.7 ± 3.3 | 13.3 ± 3.3 | 3.3 ± 3.3 |
6 | 26.7 ± 6.7 | 33.3 ± 8.8 | 13.3 ± 3.3 | |
12 | 36.7 ± 8.8 | 46.7 ± 8.8 | 20.0 ± 5.8 | |
24 | 100 | 96.7 ± 3.3 | 100 | |
36 | 100 | 100 | 100 | |
48 | 100 | 100 | 100 | |
Larvae | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | |
12 | 0 | 0 | 10.0 ± 0 | |
24 | 16.7 ± 8.8 | 56.7 ± 8.8 | 73.3 ± 8.8 | |
36 | 0 | 66.7 ± 13.3 | 76.7 ± 3.3 | |
48 | 40.0 ± 5.8 | 66.7 ± 3.3 | 96.7 ± 3.3 | |
Pupae | 0 | 16.7 ± 8.8 | 20.0 ± 5.8 | 30.0 ± 5.8 |
6 | 56.7 ± 12.0 | 50.0 ± 5.8 | 83.3 ± 16.7 | |
12 | 56.7 ± 3.3 | 50.0 ± 10.0 | 93.3 ± 5.8 | |
24 | 100 | 70.0 ± 15.3 | 96.7 ± 3.3 | |
36 | 100 | 63.3 ± 6.7 | 96.7 ± 3.3 | |
48 | 100 | 83.3 ± 3.3 | 100 | |
Adults | 0 | 3.3 ± 3.3 | 20.0 ± 5.8 | 0 |
6 | 6.7 ± 3.3 | 20.0 ± 5.8 | 30.0 ± 5.8 | |
12 | 10.0 ± 0 | 43.3 ± 8.8 | 33.3 ± 3.3 | |
24 | 50.1 ± 10.0 | 46.7 ± 8.8 | 70.0 ± 15.3 | |
36 | 86.7 ± 13.4 | 66.7 ± 17.7 | 96.7 ± 3.3 | |
48 | 66.7 ± 14.6 | 76.7 ± 12.0 | 100 |
Insect Stages | O3 Conc. (ppm) | N | LT50 (h) (95% FLs) | LT99 (h) (95% FLs) | Slope ± SE | Intercept ± SE | χ2 (df) (p) |
---|---|---|---|---|---|---|---|
Eggs | 66 | 150 | 10.44 (8.71–12.31) | 37.37 (27.65–62.43) | 3.80 ± 0.46 | −2.43 ± 3.41 | 16.06 (df = 13) (p = 0.24) |
117 | 150 | 9.44 (7.58–11.30) | 40.69 (29.24–72.49) | 4.21 ± 0.51 | −6.36 ± 3.79 | 12.89 (df = 13) (p = 0.46) | |
155 | 150 | 12.79 (11.02–14.86) | 35.52 (27.57–53.81) | 3.43 ± 0.41 | 1.76 ± 2.94 | 18.62 (df = 13) (p = 0.14) | |
Larvae | 66 | 150 | 70.80 (47.49−2379.0) | 404.37 (130.20–NA) | 7.22 ± 1.89 | 14.18 ± 3.54 | 19.83 (df = 13) (p = 0.09) |
117 | 150 | 29.34 (24.98–34.50) | 122.39 (84.27–247.34) | 4.49 ± 0.59 | 6.79 ± 2.74 | 17.20 (df = 13) (p = 0.19) | |
155 | 150 | 21.11 (18.05–24.16) | 65.86 (51.59–98.22) | 3.89 ± 0.35 | 4.33 ± 2.06 | 10.57 (df = 13) (p = 0.64) | |
Pupae | 66 | 150 | 6.70 (4.54–8.51) | 40.35 (26.90–92.01) | 4.39 ± 0.69 | −10.49 ± 5.43 | 15.36 (df = 13) (p = 0.28) |
117 | 150 | 7.97 (0.84–14.07) | na | 5.46 ± 1.18 | −9.66 ± 7.18 | 14.22 (df = 13) (p = 0.36) | |
155 | 150 | 1.25 (na) | 50.88 (NA) | 4.03 ± 1.22 | −12.59 ± 10.68 | 20.09 (p = 0.09) | |
Adults | 66 | 150 | 24.57 (17.70–34.63) | 162.93 (84.50–900.09) | 4.08 ± 0.65 | 5.80 ± 3.30 | 26.60 (df = 13) (p = 0.01) |
117 | 150 | 19.42 (13.70–27.07) | 585.33 (207.85–7204.0) | 5.15 ± 0.98 | −2.44 ± 5.15 | 19.58 (df = 13) (p = 0.11) | |
155 | 150 | 12.32 (8.58–16.20) | 79.27 (47.41–239.51) | 4.16 ± 0.38 | −1.87 ± 2.59 | 20.94 (df = 13) (p = 0.07) |
Stage | Exposure (h) | Ozone Concentrations | |
---|---|---|---|
37 ppm | 155 ppm | ||
Eggs | 0 | 6.7 ± 3.3 | 5.3 ± 4.3 |
6 | 3.3 ± 3.3 | 73.3 ± 12.0 | |
12 | 46.7 ± 3.3 | 86.7 ± 3.3 | |
24 | 50.0 ± 11.6 | 93.3 ± 3.3 | |
36 | 83.3 ± 3.3 | 93.3 ± 3.3 | |
46 | 96.7 ± 3.3 | 100 | |
Mobile Stages | 0 | 3.7 ± 2.2 | na |
6 | 85.0 ± 5.0 | na | |
12 | 100 | na | |
24 | 100 | na | |
36 | 100 | na | |
48 | 100 | na |
Mite Stages | O3 Conc. (ppm) | N | LT50 h (95% Fiducial Limits) | LT99 h (95% Fiducial Limits) | Slope ± SE | Intercept ± SE | χ2 (df) (p) |
---|---|---|---|---|---|---|---|
Eggs | 37 | 150 | 17.42 (14.28–20.79) | 96.72 (66.54–181.47) | 4.64 ± 0.26 | −2.17 ± 1.17 | 15.44 (df = 13) (p = 0.28 |
Eggs | 155 | 150 | 2.31 (0.15–4.91) | 81.87 (38.24–1294.00) | 3.14 ± 0.37 | −2.15 ± 2.29 | 12.85 (df = 13) (p = 0.46) |
Mobile Stages | 37 | 150 | 5.33 (na) | 6.96 (na) | 1.39 ± 0.18 | −1.44 ± 2.46 | 2.35 (df = 13) (p = 0.99) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Aikins, M.J.; Schilling, W.; Phillips, T.W. Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams. Insects 2016, 7, 44. https://doi.org/10.3390/insects7030044
Hasan MM, Aikins MJ, Schilling W, Phillips TW. Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams. Insects. 2016; 7(3):44. https://doi.org/10.3390/insects7030044
Chicago/Turabian StyleHasan, Md. Mahbub, Michael J. Aikins, Wes Schilling, and Thomas W. Phillips. 2016. "Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams" Insects 7, no. 3: 44. https://doi.org/10.3390/insects7030044
APA StyleHasan, M. M., Aikins, M. J., Schilling, W., & Phillips, T. W. (2016). Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams. Insects, 7(3), 44. https://doi.org/10.3390/insects7030044