Biological Control Strategies for Mosquito Vectors of Arboviruses
Abstract
:1. Introduction
2. Predators for Mosquito Control—Historical and Ongoing Stories of Success
2.1. Gambusia affinis, the Mosquito Fish
2.2. Predatory Toxorhynchites Species Mosquitoes
2.3. Copepods to Control Aedes Larvae
3. Application of Microorganisms to Mosquito Control
3.1. Endotoxins of Bacillus thuringiensis israelensis and Lysinibacillus sphaericus
3.2. Entomopathogenic Fungus
3.3. Endosymbiotic Wolbachia Bacterium as A Tool for Biological Control
4. Genetically Modified Mosquitoes for Vector Control
4.1. Genetically Modified Mosquitoes with Viral Resistance
4.2. Release of Insects Carrying a Dominant Lethal Gene (RIDL)
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AeAct-4 | Aedes Actin-4 |
AealbAct-4 | Ae. albopictus Actin-4 |
Ae. | Aedes |
An. | Anopheles |
Bti | Bacillus thuringiensis israelensis |
CHIKV | chikungunya virus |
Cx. | Culex |
DENV | dengue virus |
EIP | extrinsic incubation period |
G. | Gambusia |
Hsp70 | Drosophila heat shock protein 70 |
IR | inverted repeat |
IVM | integrated vector management |
JEV | Japanese encephalitis virus |
Ls | Lysinibacillus sphaericus |
M. | Metarhizium |
RIDL | Release of Insects with Dominant Lethality |
RNAi | RNA interference |
SINV | Sindbis virus |
SIT | sterile insect technique |
tTA | tetracycline–controlled transactivator |
Tx. | Toxorhynchites |
WNV | West Nile virus |
YFV | yellow fever virus |
ZIKV | Zika virus |
References
- Tabachnick, W.J. Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. Am. Entomol. 1991, 37, 14–26. [Google Scholar] [CrossRef]
- Reiter, P.; Fontenille, D.; Paupy, C. Aedes albopictus as an epidemic vector of chikungunya virus: Another emerging problem? Lancet Infect. Dis. 2006, 6, 463–464. [Google Scholar] [CrossRef]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.; Vaughn, D.W. Pathogenesis and Clinical Features of Japanese Encephalitis and West Nile Virus Infections. In Japanese Encephalitis and West Nile Viruses; Springer: Berlin, Germany, 2002. [Google Scholar]
- World Health Organization. Pesticides and Their Application; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- World Health Organization. Global Strategic Framework for Integrated Vector Management; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C., Jr.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef] [PubMed]
- Bay, E.C. Mosquito control by fish: A present-day appraisal. WHO Chron. 1967, 21, 415–423. [Google Scholar] [PubMed]
- Tietze, N.S.; Hester, P.G.; Hallmon, C.F.; Olson, M.A.; Shaffer, K.R. Acute toxicity of mosquitocidal compounds to young mosquitofish, Gambusia affinis. J. Am. Mosq. Control Assoc. 1991, 7, 290–293. [Google Scholar] [PubMed]
- Kramer, V.L.; Garcia, R.; Colwell, A.E. An evaluation of Gambusia affinis and Bacillus thuringiensis var. israelensis as mosquito control agents in California wild rice fields. J. Am. Mosq. Control Assoc. 1988, 4, 470–478. [Google Scholar] [PubMed]
- Linden, A.L.; Cech, J.J., Jr. Prey selection by mosquitofish (Gambusia affinis) in California rice fields: Effect of vegetation and prey species. J. Am. Mosq. Control Assoc. 1990, 6, 115–120. [Google Scholar] [PubMed]
- Wang, C.H.; Hwang, J.S.; Lay, J.R. Preliminary study on the biological control of dengue vectors by fish in Liouchyou Prefecture, Pingtung County, Taiwan. Gaoxiong Yi Xue Ke Xue Za Zhi 1990, 6, 382–388. [Google Scholar] [PubMed]
- Angelon, K.A.; Petranka, J.W. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. J. Chem. Ecol. 2002, 28, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, A.R.; Walton, W.E. The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis. Med. Vet. Entomol. 2008, 22, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.; Prasad, R.N.; Prasad, H.; Shukla, R.P.; Sharma, V.P. Gambusia affinis: Dispersal due to floods and its failure to colonize new water bodies in Shahjahanpur District (U.P.). Indian J. Malariol. 1992, 29, 113–118. [Google Scholar] [PubMed]
- Azevedo-Santos, V.M.; Vitule, J.R.S.; Garcia-Berthou, E.; Pelicice, F.M.; Simberloff, D. Misguided strategy for mosquito control. Science 2016, 351. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, M.; Tonn, R.J. Bionomics of Toxorhynchites splendens in the larval habitats of Aedes aegypti in Bangkok, Thailand. Bull. World Health Organ. 1970, 43, 762–766. [Google Scholar] [PubMed]
- Trpis, M. Interaction between the predator Toxorhynchites brevipalpis and its prey Aedes aegypti. Bull. World Health Organ. 1973, 49, 359–365. [Google Scholar] [PubMed]
- Padgett, P.D.; Focks, D.A. Laboratory observations on the predation of Toxorhynchites rutilus rutilus on Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1980, 17, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, T.N.; Tikasingh, E.S. A laboratory investigation of mosquito larval predation by Toxorhynchites moctezuma on Aedes aegypti. Med. Vet. Entomol. 1989, 3, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Focks, D.A.; Sackett, S.R.; Dame, D.A.; Bailey, D.L. Ability of Toxorhynchites amboinensis (Doleschall) (Diptera: Culicidae) to locate and oviposit in artificial containers in an urban environment. Environ. Entomol. 2014, 12, 1073–1077. [Google Scholar] [CrossRef]
- Mohamad, N.; Zuharah, W.F. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector. Trop. biomed. 2014, 31, 166–173. [Google Scholar] [PubMed]
- Focks, D.A.; Sackett, S.R.; Dame, D.A.; Bailey, D.L. Toxorhynchites rutilus rutilus (Diptera: Culicidae): Field studies on dispersal and oviposition in the context of the biocontrol of urban container–breeding mosquitoes. J. Med. Entomol. 1983, 20, 383–390. [Google Scholar] [CrossRef]
- Schuler, T.C.; Beier, J.C. Oviposition dynamics of two released species of Toxorhynchites (Diptera: Culicidae) and potential prey species. J. Med. Entomol. 1983, 20, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S. Influence of tree trunks on the spatial distribution of Toxorhynchites r. rutilus ovipositions in a coastal oak/palm hammock in Florida. J. Am. Mosq. Control Assoc. 1991, 7, 452–455. [Google Scholar] [PubMed]
- Focks, D.A.; Sackett, S.R.; Dame, D.A.; Bailey, D.L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (l.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 1985, 78, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Toohey, M.K.; Goettel, M.S.; Takagi, M.; Ram, R.C.; Prakash, G.; Pillai, J.S. Field studies on the introduction of the mosquito predator Toxorhynchites amboinensis (Diptera: Culicidae) into Fiji. J. Med. Entomol. 1985, 22, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, S.C.; Clark, G.G.; Martinez, R. Effects of single introduction of Toxorhynchites moctezuma upon Aedes aegypti on a Caribbean island. J. Am. Mosq. Control Assoc. 1991, 7, 7–10. [Google Scholar] [PubMed]
- Tikasingh, E.S.; Eustace, A. Suppression of Aedes aegypti by predatory Toxorhynchites moctezuma in an island habitat. Med. Vet. Entomol. 1992, 6, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.R.; Wettach, G.R.; Smith, J.L. Effects of larval density and predation by Toxorhynchites amboinensis on Aedes polynesiensis (Diptera: Culicidae) developing in coconuts. J. Am. Mosq. Control Assoc. 2005, 21, 425–431. [Google Scholar] [CrossRef]
- Nyamah, M.A.; Sulaiman, S.; Omar, B. Field observation on the efficacy of Toxorhynchites splendens (Wiedemann) as a biocontrol agent against Aedes albopictus (Skuse) larvae in a cemetery. Trop. Biomed. 2011, 28, 312–319. [Google Scholar] [PubMed]
- Nordin, O.; Donald, W.; Ming, W.H.; Ney, T.G.; Mohamed, K.A.; Halim, N.A.; Winskill, P.; Hadi, A.A.; Muhammad, Z.S.; Lacroix, R.; et al. Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species. PLoS ONE 2013, 8, e58805. [Google Scholar]
- Hurst, T.P.; Pittman, G.; O’Neill, S.L.; Ryan, P.A.; Nguyen, H.L.; Kay, B.H. Impacts of Wolbachia infection on predator prey relationships: Evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. J. Med. Entomol. 2012, 49, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Lardeux, F.; Riviere, F.; Sechan, Y.; Kay, B.H. Release of Mesocyclops aspericornis (Copepoda) for control of larval Aedes polynesiensis (Diptera: Culicidae) in land crab burrows on an atoll of French Polynesia. J. Med. Entomol. 1992, 29, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Kay, B.H.; Lyons, S.A.; Holt, J.S.; Holynska, M.; Russell, B.M. Point source inoculation of Mesocyclops (Copepoda: Cyclopidae) gives widespread control of Ochlerotatus and Aedes (Diptera: Culicidae) immatures in service manholes and pits in north Queensland, Australia. J. Med. Entomol. 2002, 39, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.F.; Marten, G.G.; Clark, G.G. A simple method for cultivating freshwater copepods used in biological control of Aedes aegypti. J. Am. Mosq. Control Assoc. 1992, 8, 409–412. [Google Scholar] [PubMed]
- Pernia, J.; De Zoppi, R.E.; Palacios-Caceres, M. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae. J. Am. Mosq. Control Assoc. 2007, 23, 166–171. [Google Scholar] [CrossRef]
- Soumare, M.K.; Cilek, J.E.; Schreibers, E.T. Prey and size preference of Mesocyclops longisetus (Copepoda) for Aedes albopictus and Culex quinquefasciatus larvae. J. Am. Mosq. Control Assoc. 2004, 20, 305–310. [Google Scholar] [PubMed]
- Calliari, D.; Sanz, K.; Martinez, M.; Cervetto, G.; Gomez, M.; Basso, C. Comparison of the predation rate of freshwater cyclopoid copepod species on larvae of the mosquito Culex pipiens. Med. Vet. Entomol. 2003, 17, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Micieli, M.V.; Marti, G.; Garcia, J.J. Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina. Mem. I. Oswaldo. Cruz. 2002, 97, 835–838. [Google Scholar] [CrossRef]
- Chaper, S.; Hernandez-Chavarria, F. Scanning electron microscopy of damage caused by Mesocyclops thermocyclopoides (Copepoda: Cyclopoidea) on larvae of the dengue fever vector Aedes aegypti (Diptera: Culicidae). Rev. Biol. Trop. 2006, 54, 843–846. [Google Scholar] [CrossRef]
- Dieng, H.; Boots, M.; Tuno, N.; Tsuda, Y.; Takagi, M. A laboratory and field evaluation of Macrocyclops distinctus, Megacyclops viridis and Mesocyclops pehpeiensis as control agents of the dengue vector Aedes albopictus in a peridomestic area in Nagasaki, Japan. Med. Vet. Entomol. 2002, 16, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Nam, V.S.; Yen, N.T.; Holynska, M.; Reid, J.W.; Kay, B.H. National progress in dengue vector control in Vietnam: Survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. Am. J. Trop. Med. Hyg. 2000, 62, 5–10. [Google Scholar] [PubMed]
- Kay, B.H.; Nam, V.S.; Tien, T.V.; Yen, N.T.; Phong, T.V.; Diep, V.T.; Ninh, T.U.; Bektas, A.; Aaskov, J.G. Control of Aedes vectors of dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance. Am. J. Trop. Med. Hyg. 2002, 66, 40–48. [Google Scholar]
- Vu, S.N.; Nguyen, T.Y.; Tran, V.P.; Truong, U.N.; Le, Q.M.; Le, V.L.; Le, T.N.; Bektas, A.; Briscombe, A.; Aaskov, J.G.; et al. Elimination of dengue by community programs using Mesocyclops (Copepoda) against Aedes aegypti in central Vietnam. Am. J. Trop. Med. Hyg. 2005, 72, 67–73. [Google Scholar] [PubMed]
- Kay, B.H.; Tuyet Hanh, T.T.; Le, N.H.; Quy, T.M.; Nam, V.S.; Hang, P.V.; Yen, N.T.; Hill, P.S.; Vos, T.; Ryan, P.A. Sustainability and cost of a community-based strategy against Aedes aegypti in northern and central Vietnam. Am. J. Trop. Med. Hyg. 2010, 82, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Muspratt, J. Destruction of the larvae of Anopheles gambiae giles by a Coelomomyces fungus. Bull. World Health Organ. 1963, 29, 81–86. [Google Scholar] [PubMed]
- Sanad, M.M.; Shamseldean, M.S.M.; Elgindi, A.-E.Y.; Gaugler, R. Host penetration and emergence patterns of the mosquito-parasitic mermithids Romanomermis iyengari and Strelkovimermis spiculatus (Nematoda: Mermithidae). J. Nematol. 2013, 45, 30–38. [Google Scholar] [PubMed]
- Creighton, C.S.; McFadden, T.L.; Cuthbert, R.B.; Onsager, J.A. Control of four species of caterpillars on cabbage with Bacillus thuringiensis var. Alesti, 1969–70. J. Econ. Entomol. 1972, 65, 1399–1402. [Google Scholar] [PubMed]
- Bellows, T.S.; Fisher, T.W. Handbook of Biological Control: Principles and Applications of Biological Control; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Boonserm, P.; Davis, P.; Ellar, D.J.; Li, J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 2005, 348, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Sriwimol, W.; Aroonkesorn, A.; Sakdee, S.; Kanchanawarin, C.; Uchihashi, T.; Ando, T.; Angsuthanasombat, C. Potential prepore trimer formation by the Bacillus thuringiensis mosquito-specific toxin: Molecular insights into a critical prerequisite of membrane-bound monomers. J. Biol. Chem. 2015, 290, 20793–20803. [Google Scholar] [CrossRef] [PubMed]
- Canton, P.E.; Cancino-Rodezno, A.; Gill, S.S.; Soberon, M.; Bravo, A. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis. BMC Genomics 2015, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Sóberon, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [PubMed]
- Wirth, M.C.; Georghiou, G.P.; Federici, B.A. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 1997, 94, 10536–10540. [Google Scholar] [CrossRef] [PubMed]
- Cokmus, C.; Davidson, E.W.; Cooper, K. Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells. J. Invertebr. Pathol. 1997, 69, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L.; Potvin, L.; Coux, F.; Charles, J.F.; Berry, C.; Humphreys, M.J.; Jones, A.F.; Bernhart, I.; Dalla Serra, M.; Menestrina, G. Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. J. Membr. Biol. 2001, 184, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.W. Variation in binding of Bacillus sphaericus toxin and wheat germ agglutinin to larval midgut cells of six species of mosquitoes. J. Invertebr. Pathol. 1989, 53, 251–259. [Google Scholar] [CrossRef]
- Rodcharoen, J.; Mulla, M.S. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus. J. Am. Mosq. Control Assoc. 1996, 12, 247–250. [Google Scholar] [PubMed]
- Nielsen–Leroux, C.; Pasquier, F.; Charles, J.F.; Sinegre, G.; Gaven, B.; Pasteur, N. Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera: Culicidae) larvae. J. Med. Entomol. 1997, 34, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Poncet, S.; Bernard, C.; Dervyn, E.; Cayley, J.; Klier, A.; Rapoport, G. Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 1997, 63, 4413–4420. [Google Scholar] [PubMed]
- Federici, B.A.; Park, H.W.; Bideshi, D.K.; Wirth, M.C.; Johnson, J.J. Recombinant bacteria for mosquito control. J. Exp. Biol. 2003, 206, 3877–3885. [Google Scholar] [CrossRef] [PubMed]
- Federici, B.A.; Park, H.W.; Bideshi, D.K.; Wirth, M.C.; Johnson, J.J.; Sakano, Y.; Tang, M. Developing recombinant bacteria for control of mosquito larvae. J. Am. Mosq. Control Assoc. 2007, 23, 164–175. [Google Scholar] [CrossRef]
- Alto, B.W.; Lord, C.C. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl. Trop. Dis. 2016, 10, e0004370. [Google Scholar] [CrossRef] [PubMed]
- Boyce, R.; Lenhart, A.; Kroeger, A.; Velayudhan, R.; Roberts, B.; Horstick, O. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: Systematic literature review. Trop. Med. Int. Health 2013, 18, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Darbro, J.M.; Johnson, P.H.; Thomas, M.B.; Ritchie, S.A.; Kay, B.H.; Ryan, P.A. Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am. J. Trop. Med. Hyg. 2012, 86, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Kerwin, J.L.; Washino, R.K. Ground and aerial application of the asexual stage of Lagenidium giganteum for control of mosquitoes associated with rice culture in the central valley of California. J. Am. Mosq. Control Assoc. 1987, 3, 59–64. [Google Scholar] [PubMed]
- Rueda, L.M.; Patel, K.J.; Axtell, R.C. Efficacy of encapsulated Lagenidium giganteum (Oomycetes: Lagenidiales) against Culex quinquefasciatus and Aedes aegypti larvae in artificial containers. J. Am. Mosq. Control Assoc. 1990, 6, 694–699. [Google Scholar] [PubMed]
- Guzman, D.R.; Axtell, R.C. Population dynamics of Culex quinquefasciatus and the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) in stagnant water pools. J. Am. Mosq. Control Assoc. 1987, 3, 442–449. [Google Scholar] [PubMed]
- Hallmon, C.F.; Schreiber, E.T.; Vo, T.; Bloomquist, A. Field trials of three concentrations of Laginex as biological larvicide compared to Vectobac-12as as a biocontrol agent for Culex quinquefasciatus. J. Am. Mosq. Control Assoc. 2000, 16, 5–8. [Google Scholar] [PubMed]
- Orduz, S.; Axtell, R.C. Compatibility of Bacillus thuringiensis var. Israelensis and Bacillus sphaericus with the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales). J. Am. Mosq. Control Assoc. 1991, 7, 188–193. [Google Scholar] [PubMed]
- Golkar, L.; LeBrun, R.A.; Ohayon, H.; Gounon, P.; Papierok, B.; Brey, P.T. Variation of larval susceptibility to Lagenidium giganteum in three mosquito species. J. Invertebr. Pathol. 1993, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brey, P.T.; Lebrun, R.A.; Papierok, B.; Ohayon, H.; Vennavalli, S.; Hafez, J. Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete). Cell Tissue Res. 1988, 253, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.J.; Rueda, L.M.; Axtell, R.C.; Stinner, R.E. Temperature-dependent development of the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) in larvae of Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 1991, 28, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Scholte, E.J.; Knols, B.G.; Samson, R.A.; Takken, W. Entomopathogenic fungi for mosquito control: A review. J. Insect Sci. 2004, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Riba, G.; Keita, A.; Soares, G.G., Jr.; Ferron, P. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae. J. Am. Mosq. Control Assoc. 1986, 2, 469–473. [Google Scholar] [PubMed]
- Agudelo-Silva, F.; Wassink, H. Infectivity of a Venezuelan strain of Metarhizium anisopliae to Aedes aegypti larvae. J. Invertebr. Pathol. 1984, 43, 435–436. [Google Scholar] [CrossRef]
- Lacey, C.M.; Lacey, L.A.; Roberts, D.R. Route of invasion and histopathology of Metarhizium anisopliae in Culex quinquefasciatus. J. Invertebr. Pathol. 1988, 52, 108–118. [Google Scholar] [CrossRef]
- Butt, T.M.; Greenfield, B.P.; Greig, C.; Maffeis, T.G.; Taylor, J.W.; Piasecka, J.; Dudley, E.; Abdulla, A.; Dubovskiy, I.M.; Garrido-Jurado, I.; et al. Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of accidental death. PLoS ONE 2013, 8, e81686. [Google Scholar] [CrossRef] [PubMed]
- Alkhaibari, A.M.; Carolino, A.T.; Yavasoglu, S.I.; Maffeis, T.; Mattoso, T.C.; Bull, J.C.; Samuels, R.I.; Butt, T.M. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: Attack on several fronts accelerates mortality. PLoS Pathog. 2016, 12, e1005715. [Google Scholar] [CrossRef]
- Hertig, M.; Wolbach, S.B. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar] [PubMed]
- O’Neill, S.L.; Pettigrew, M.M.; Sinkins, S.P.; Braig, H.R.; Andreadis, T.G.; Tesh, R.B. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 1997, 6, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Dobson, S.L.; Marsland, E.J.; Veneti, Z.; Bourtzis, K.; O’Neill, S.L. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 2002, 68, 656–660. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.L.; Giordano, R.; Colbert, A.M.; Karr, T.L.; Robertson, H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 1992, 89, 2699–2702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Rousset, F.; O’Neil, S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc. Biol. Sci. 1998, 265, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Van Meer, M.M.; Witteveldt, J.; Stouthamer, R. Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol. Biol. 1999, 8, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.H. Transovarial transmission of Rickettsia-like microorganisms in mosquitoes. Ann. N. Y. Acad. Sci. 1975, 266, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 1967, 216, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.F.; Adak, T. Population replacement in Culex fatigens by means of cytoplasmic incompatibility. Bull. World Health Organ. 1974, 51, 249–255. [Google Scholar] [PubMed]
- Yen, J.H.; Barr, A.R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971, 232, 657–658. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.H.; Barr, A.R. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J. Invertebr. Pathol. 1973, 22, 242–250. [Google Scholar] [CrossRef]
- Braig, H.R.; Guzman, H.; Tesh, R.B.; O’Neill, S.L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 1994, 367, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef] [PubMed]
- Brelsfoard, C.L.; Sechan, Y.; Dobson, S.L. Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl. Trop. Dis. 2008, 2, e129. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Khoo, C.C.; Dobson, S.L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005, 310, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Dean, J.L.; Khoo, C.; Dobson, S.L. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem. Mol. Biol. 2005, 35, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002, 10, 100–103. [Google Scholar] [CrossRef]
- McElroy, K.L.; Girard, Y.A.; McGee, C.E.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes. Vector Borne Zoonotic. Dis. 2008, 8, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.I.; Richardson, J.H.; Sanchez-Vargas, I.; Olson, K.E.; Beaty, B.J. Dengue virus type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC microbiol. 2007, 7, 9–21. [Google Scholar] [CrossRef] [PubMed]
- McMeniman, C.J.; Lane, R.V.; Cass, B.N.; Fong, A.W.; Sidhu, M.; Wang, Y.F.; O’Neill, S.L. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009, 323, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Turley, A.P.; Moreira, L.A.; O’Neill, S.L.; McGraw, E.A. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl. Trop. Dis. 2009, 3, e516. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Johnson, P.H.; Moreira, L.A.; Iturbe-Ormaetxe, I.; Frentiu, F.D.; McMeniman, C.J.; Leong, Y.S.; Dong, Y.; Axford, J.; Kriesner, P.; et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011, 476, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hurk, A.F.; Hall-Mendelin, S.; Pyke, A.T.; Frentiu, F.D.; McElroy, K.; Day, A.; Higgs, S.; O’Neill, S.L. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl. Trop. Dis. 2012, 6, e1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliota, M.T.; Walker, E.C.; Uribe Yepes, A.; Velez, I.D.; Christensen, B.M.; Osorio, J.E. The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2016, 10, e0004677. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Lu, G.; Torres, S.; Edmonds, J.H.; Kay, B.H.; Khromykh, A.A.; Asgari, S. Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J. Virol. 2013, 87, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.L.; Meola, M.A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 2010, 5, e11977. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Zhou, G.; Lu, P.; Xi, Z. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl. Trop. Dis. 2013, 7, e2250. [Google Scholar] [CrossRef] [PubMed]
- Raquin, V.; Valiente Moro, C.; Saucereau, Y.; Tran, F.H.; Potier, P.; Mavingui, P. Native Wolbachia from Aedes albopictus blocks chikungunya virus infection in cellulo. PLoS ONE 2015, 10, e0125066. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B.L.; Hughes, G.L.; Paul, O.; Matacchiero, A.C.; Kramer, L.D.; Rasgon, J.L. Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl. Trop. Dis. 2014, 8, e2965. [Google Scholar] [CrossRef] [PubMed]
- Rainey, S.M.; Martinez, J.; McFarlane, M.; Juneja, P.; Sarkies, P.; Lulla, A.; Schnettler, E.; Varjak, M.; Merits, A.; Miska, E.A.; et al. Wolbachia blocks viral genome replication early in infection without a transcriptional response by the endosymbiont or host small RNA pathways. PLoS Pathog. 2016, 12, e1005536. [Google Scholar] [CrossRef] [PubMed]
- Wong, Z.S.; Brownlie, J.C.; Johnson, K.N. Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations. Appl. Environ. Microbiol. 2015, 81, 3001–3005. [Google Scholar] [CrossRef] [PubMed]
- Chrostek, E.; Marialva, M.S.; Yamada, R.; O’Neill, S.L.; Teixeira, L. High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. PLoS ONE 2014, 9, e99025. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Longdon, B.; Bauer, S.; Chan, Y.S.; Miller, W.J.; Bourtzis, K.; Teixeira, L.; Jiggins, F.M. Symbionts commonly provide broad spectrum resistance to viruses in insects: A comparative analysis of Wolbachia strains. PLoS Pathog. 2014, 10, e1004369. [Google Scholar] [CrossRef] [PubMed]
- Bourtzis, K.; Pettigrew, M.M.; O’Neill, S.L. Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol. Biol. 2000, 9, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Sinkins, S.P.; Braig, H.R.; O’Neill, S.L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc. Biol. Sci. 1995, 261, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rousset, F.; Braig, H.R.; O’Neill, S.L. A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity 1999, 82, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Gavotte, L.; Mercer, D.R.; Dobson, S.L. Artificial triple Wolbachia infection in Aedes albopictus yields a new pattern of unidirectional cytoplasmic incompatibility. Appl. Environ. Microbiol. 2010, 76, 5887–5891. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.; Plichart, C.; Sang, A.C.; Brelsfoard, C.L.; Bossin, H.C.; Dobson, S.L. Open release of male mosquitoes infected with a Wolbachia biopesticide: Field performance and infection containment. PLoS Negl. Trop. Dis. 2012, 6, e1797. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Frentiu, F.D.; Zakir, T.; Walker, T.; Popovici, J.; Pyke, A.T.; Van Den Hurk, A.; McGraw, E.A.; O’Neill, S.L. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 2014, 8, e2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.H.; Carrasco, A.M.; Dong, Y.; Sgro, C.M.; McGraw, E.A. The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti. Am. J. Trop. Med. Hyg. 2016, 94, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S. Alternative approaches to control dengue and chikungunya. Bayer Public Health 2013, 24, 35–42. [Google Scholar]
- Franz, A.W.; Sanchez-Vargas, I.; Adelman, Z.N.; Blair, C.D.; Beaty, B.J.; James, A.A.; Olson, K.E. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl. Acad. Sci. USA 2006, 103, 4198–4203. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Keith, J.H.; Barde, P.V.; Fraser, T.S.; Fraser, M.J., Jr. Targeting of highly conserved dengue virus sequences with anti-dengue virus trans-splicing group I introns. BMC Mol. Biol. 2010, 11, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Keith, J.H.; Fraser, T.S.; Dawson, J.L.; Kucharski, C.A.; Horne, K.M.; Higgs, S.; Fraser, M.J., Jr. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain. Virol. J. 2014, 11, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Nawtaisong, P.; Keith, J.; Fraser, T.; Balaraman, V.; Kolokoltsov, A.; Davey, R.A.; Higgs, S.; Mohammed, A.; Rongsriyam, Y.; Komalamisra, N.; et al. Effective suppression of dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol. J. 2009, 6, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, A.T.; Jasinskiene, N.; Tretiakov, M.; Thiery, I.; Zettor, A.; Bourgouin, C.; James, A.A. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl. Acad. Sci. USA 2012, 109, 11070–11071. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.D. Successful and currently ongoing parasite eradication programs. Vet. Parasitol. 2006, 139, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Dame, D.A.; Curtis, C.F.; Benedict, M.Q.; Robinson, A.S.; Knols, B.G. Historical applications of induced sterilisation in field populations of mosquitoes. Malar. J. 2009, 8, S2–S11. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.H.; Curtis, C.F. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med. Vet. Entomol. 2005, 19, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Labrecque, G.C.; Bowman, M.C.; Patterson, R.S.; Seawright, J.A. Persistence of thiotepa and tepa in pupae and adults of Culex pipiens fatigans Wiedemann. Bull. World Health Organ. 1972, 47, 675–676. [Google Scholar] [PubMed]
- Phuc, H.K.; Andreasen, M.H.; Burton, R.S.; Vass, C.; Epton, M.J.; Pape, G.; Fu, G.; Condon, K.C.; Scaife, S.; Donnelly, C.A.; et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007, 5, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.H.; Sakai, R.K.; Romans, P.; Gwadz, R.W.; Kantoff, P.; Coon, H.G. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 1987, 237, 779–781. [Google Scholar] [CrossRef] [PubMed]
- McGrane, V.; Carlson, J.O.; Miller, B.R.; Beaty, B.J. Microinjection of DNA into Aedes triseriatus ova and detection of integration. Am. J. Trop. Med. Hyg. 1988, 39, 502–510. [Google Scholar] [PubMed]
- Morris, A.C.; Eggleston, P.; Crampton, J.M. Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med. Vet. Entomol. 1989, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, D.D.; Alphey, L.; Meredith, J.M.; Eggleston, P. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol. Biol. 2006, 15, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.C.; Schaub, T.L.; James, A.A. Flp-mediated recombination in the vector mosquito, Aedes aegypti. Nucleic Acids Res. 1991, 19, 5895–5900. [Google Scholar] [CrossRef] [PubMed]
- Haghighat-Khah, R.E.; Scaife, S.; Martins, S.; St John, O.; Matzen, K.J.; Morrison, N.; Alphey, L. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLoS ONE 2015, 10, e0121097. [Google Scholar] [CrossRef] [PubMed]
- Labbe, G.M.; Nimmo, D.D.; Alphey, L. piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLoS Negl. Trop. Dis. 2010, 4, e788. [Google Scholar] [CrossRef] [PubMed]
- Jasinskiene, N.; Coates, C.J.; Benedict, M.Q.; Cornel, A.J.; Rafferty, C.S.; James, A.A.; Collins, F.H. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl. Acad. Sci. USA 1998, 95, 3743–3747. [Google Scholar] [CrossRef] [PubMed]
- Lobo, N.; Li, X.; Hua-Van, A.; Fraser, M.J., Jr. Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus). Mol. Genet. Genomics 2001, 265, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Grossman, G.L.; Rafferty, C.S.; Fraser, M.J.; Benedict, M.Q. The piggybac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 2000, 30, 909–914. [Google Scholar] [CrossRef]
- Lobo, N.; Li, X.; Fraser, M.J., Jr. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol. Gen. Genet. 1999, 261, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Beeman, R.W.; Shike, H.; Besansky, N.J.; Mukabayire, O.; Higgs, S.; James, A.A.; Burns, J.C. Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 1996, 93, 6181–6185. [Google Scholar] [CrossRef] [PubMed]
- Aryan, A.; Anderson, M.A.; Myles, K.M.; Adelman, Z.N. Talen-based gene disruption in the dengue vector Aedes aegypti. PLoS ONE 2013, 8, e60082. [Google Scholar] [CrossRef] [PubMed]
- Kistler, K.E.; Vosshall, L.B.; Matthews, B.J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 2015, 11, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Lin, J.; Held, N.L.; Clem, R.J.; Passarelli, A.L.; Franz, A.W. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS ONE 2015, 10, e0122353. [Google Scholar] [CrossRef]
- Basu, S.; Aryan, A.; Overcash, J.M.; Samuel, G.H.; Anderson, M.A.; Dahlem, T.J.; Myles, K.M.; Adelman, Z.N. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc. Natl. Acad. Sci. USA 2015, 112, 4038–4043. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Olson, K.; Higgs, S.; Beaty, B. Molecular genetic manipulation of mosquito vectors. Annu. Rev. Entomol. 1995, 40, 359–388. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.J.; Carlson, J.O.; Beaty, B.J. A Drosophila metallothionein promoter is inducible in mosquito cells. Insect Mol. Biol. 1992, 1, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Beaty, B.J.; Black, W.C.; Carlson, J.O.; Clements, W.H.; DuTeau, N.; Harrahy, E.; Nuckols, J.; Kenneth, E.; Olson, K.E.; Rayms-Keller, A. Molecular and genetic ecotoxicologic approaches to aquatic environmental bioreporting. Environ. Health Perspect. 1998, 106, 1395–1407. [Google Scholar] [CrossRef] [PubMed]
- Kokoza, V.; Ahmed, A.; Cho, W.L.; Jasinskiene, N.; James, A.A.; Raikhel, A. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 2000, 97, 9144–9149. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.A.; Edwards, M.J.; Adhami, F.; Jasinskiene, N.; James, A.A.; Jacobs-Lorena, M. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 2000, 97, 10895–10898. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.J.; Moskalyk, L.A.; Donelly-Doman, M.; Vlaskova, M.; Noriega, F.G.; Walker, V.K.; Jacobs-Lorena, M. Characterization of a carboxypeptidase A gene from the mosquito, Aedes aegypti. Insect Mol. Biol. 2000, 9, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Cornel, A.J.; Benedict, M.Q.; Rafferty, C.S.; Howells, A.J.; Collins, F.H. Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti. Insect Biochem. Mol. Biol. 1997, 27, 993–997. [Google Scholar] [CrossRef]
- Pinkerton, A.C.; Michel, K.; O’Brochta, D.A.; Atkinson, P.W. Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol. Biol. 2000, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kokoza, V.; Ahmed, A.; Wimmer, E.A.; Raikhel, A.S. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac [3xP3-EGFP afm]. Insect Biochem. Mol. Biol. 2001, 31, 1137–1143. [Google Scholar] [CrossRef]
- Sinkins, S.P.; Gould, F. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 2006, 7, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Diamant, G. Screwworm eradication in southeastern United States. Am. J. public health Nations Health 1963, 53, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Gantz, V.M.; Bier, E. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 2015, 348, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Troupin, A.; Londono-Renteria, B.; Conway, M.J.; Cloherty, E.; Jameson, S.; Higgs, S.; Vanlandingham, D.L.; Fikrig, E.; Colpitts, T.M. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim. Biophys. Acta 2016, 1860, 1898–1909. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Liu, L.; Wang, P.; Zhang, Y.; Zhao, Y.O.; Colpitts, T.M.; Feitosa, F.; Anderson, J.F.; Fikrig, E. An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. PLoS ONE 2011, 6, e22786. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.M.; Kamrud, K.I.; Olson, K.E.; Higgs, S.; Carlson, J.O.; Beaty, B.J. Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes. Proc. Natl. Acad. Sci. USA 1996, 93, 4187–4191. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.E.; Higgs, S.; Gaines, P.J.; Powers, A.M.; Davis, B.S.; Kamrud, K.I.; Carlson, J.O.; Blair, C.D.; Beaty, B.J. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 1996, 272, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Rayner, J.O.; Olson, K.E.; Davis, B.S.; Beaty, B.J.; Blair, C.D. Engineered resistance in Aedes aegypti to a West African and a South American strain of yellow fever virus. Am. J. Trop. Med. Hyg. 1998, 58, 663–670. [Google Scholar] [PubMed]
- Franz, A.W.; Sanchez-Vargas, I.; Piper, J.; Smith, M.R.; Khoo, C.C.; James, A.A.; Olson, K.E. Stability and loss of a virus resistance phenotype over time in transgenic mosquitoes harbouring an antiviral effector gene. Insect Mol. Biol. 2009, 18, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.W.; Sanchez-Vargas, I.; Raban, R.R.; Black, W.C.T.; James, A.A.; Olson, K.E. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl. Trop. Dis. 2014, 8, e2833. [Google Scholar] [CrossRef] [PubMed]
- Mathur, G.; Sanchez-Vargas, I.; Alvarez, D.; Olson, K.E.; Marinotti, O.; James, A.A. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 2010, 19, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Taylor, S.; Fraser, T.S.; Kucharski, C.A.; Dawson, J.L.; Fraser, M.J., Jr. Suppression of the arboviruses dengue and chikungunya using a dual-acting group-I intron coupled with conditional expression of the Bax C-terminal domain. PLoS ONE 2015, 10, e0139899. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.D.; Donnelly, C.A.; Wood, R.J.; Alphey, L.S. Insect population control using a dominant, repressible, lethal genetic system. Science 2000, 287, 2474–2476. [Google Scholar] [CrossRef] [PubMed]
- Gossen, M.; Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 1992, 89, 5547–5551. [Google Scholar] [CrossRef]
- Gong, P.; Epton, M.J.; Fu, G.; Scaife, S.; Hiscox, A.; Condon, K.C.; Condon, G.C.; Morrison, N.I.; Kelly, D.W.; Dafa’alla, T.; et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat. Biotechnol. 2005, 23, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Bargielowski, I.; Nimmo, D.; Alphey, L.; Koella, J.C. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS ONE 2011, 6, e20699. [Google Scholar] [CrossRef] [PubMed]
- Bargielowski, I.; Alphey, L.; Koella, J.C. Cost of mating and insemination capacity of a genetically modified mosquito Aedes aegypti OX513A compared to its wild type counterpart. PLoS ONE 2011, 6, e26086. [Google Scholar] [CrossRef] [PubMed]
- Bargielowski, I.; Kaufmann, C.; Alphey, L.; Reiter, P.; Koella, J. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector Borne Zoonotic. Dis. 2012, 12, 1053–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massonnet-Bruneel, B.; Corre-Catelin, N.; Lacroix, R.; Lees, R.S.; Hoang, K.P.; Nimmo, D.; Alphey, L.; Reiter, P. Fitness of transgenic mosquito Aedes aegypti males carrying a dominant lethal genetic system. PLoS ONE 2013, 8, e62711. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; McKemey, A.R.; Raduan, N.; Kwee Wee, L.; Hong Ming, W.; Guat Ney, T.; Rahidah, A.A.S.; Salman, S.; Subramaniam, S.; Nordin, O.; et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE 2012, 7, e42771. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.F.; Nimmo, D.; McKemey, A.R.; Kelly, N.; Scaife, S.; Donnelly, C.A.; Beech, C.; Petrie, W.D.; Alphey, L. Field performance of engineered male mosquitoes. Nat. Biotechnol. 2011, 29, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; McKemey, A.R.; Garziera, L.; Lacroix, R.; Donnelly, C.A.; Alphey, L.; Malavasi, A.; Capurro, M.L. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0003864. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; Nimmo, D.; Naish, N.; McKemey, A.R.; Gray, P.; Wilke, A.B.; Marrelli, M.T.; Virginio, J.F.; Alphey, L.; Capurro, M.L. Mass production of genetically modified Aedes aegypti for field releases in Brazil. J. Vis. Exp. 2014, 83, e3579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, K.; Young, J.; Pineda, L.; Marquez, R.; Sosa, N.; Bernal, D.; Torres, R.; Soto, Y.; Lacroix, R.; Naish, N.; et al. Short-term suppression of Aedes aegypti using genetic control does not facilitate Aedes albopictus. Pest Manag. Sci. 2016, 72, 618–628. [Google Scholar] [CrossRef]
- Munoz, D.; Jimenez, A.; Marinotti, O.; James, A.A. The AeAct-4 gene is expressed in the developing flight muscles of female Aedes aegypti. Insect Mol. Biol. 2004, 13, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Lees, R.S.; Nimmo, D.; Aw, D.; Jin, L.; Gray, P.; Berendonk, T.U.; White-Cooper, H.; Scaife, S.; Kim Phuc, H.; et al. Female-specific flightless phenotype for mosquito control. Proc. Natl. Acad. Sci. USA 2010, 107, 4550–4554. [Google Scholar] [CrossRef] [PubMed]
- Wise De Valdez, M.R.; Nimmo, D.; Betz, J.; Gong, H.F.; James, A.A.; Alphey, L.; Black, W.C.T. Genetic elimination of dengue vector mosquitoes. Proc. Natl. Acad. Sci. USA 2011, 108, 4772–4775. [Google Scholar] [CrossRef] [PubMed]
- Labbe, G.M.; Scaife, S.; Morgan, S.A.; Curtis, Z.H.; Alphey, L. Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus. PLoS Negl. Trop. Dis. 2012, 6, e1724. [Google Scholar] [CrossRef] [PubMed]
Organisms | Species | Targeting Species | Limitations |
---|---|---|---|
Fish | Mainly Gambusia affinis | Nonspecific due to diet and predatory behaviors | Other off-target arthropod species in the same water body can be affected. Potential damage to the ecological system can occur. |
Larvae of Toxorhynchites species mosquitoes | Tx. splendens, Tx. brevipalpis, Tx. moctezuma, Tx. Amboinensis, and Tx. rutilus | Mainly Ae. aegypti | Sylvatic species cannot be readily adapted to human environment. |
Copepods | Mainly Mesocyclops and Macrocyclops species | Mainly Ae. aegypti | Most effective against first instar larvae. |
Technique | Mechanism of Population Suppression | Introduction of Lethality by Genetically Modified Arthropods | Requirement of Sex Separation |
---|---|---|---|
SIT | Suppression of population by lethality at embryo stage | Sterilization of males at pupae stage prevents the successful insemination in female adults after mating | Yes, manual separation of males and females is required |
RIDL | Suppression of population by lethality at larval stage in the absence of selectable antibiotics | Introduction of dominant lethal genes is achieved by releasing transgenic males | No, sex-specific promoters can allow the separation of males and females |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects 2017, 8, 21. https://doi.org/10.3390/insects8010021
Huang Y-JS, Higgs S, Vanlandingham DL. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects. 2017; 8(1):21. https://doi.org/10.3390/insects8010021
Chicago/Turabian StyleHuang, Yan-Jang S., Stephen Higgs, and Dana L. Vanlandingham. 2017. "Biological Control Strategies for Mosquito Vectors of Arboviruses" Insects 8, no. 1: 21. https://doi.org/10.3390/insects8010021
APA StyleHuang, Y. -J. S., Higgs, S., & Vanlandingham, D. L. (2017). Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects, 8(1), 21. https://doi.org/10.3390/insects8010021