Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation
Abstract
:1. Introduction
1.1. Kicking off X Chromosome Inactivation: The Stochastic Model
1.2. The X Inactivation Center and the Tsix/Xist Tandem
2. DNA Elements That Impact Xist Expression
2.1. The Promoter Region of Xist
2.2. Distant Regulatory Regions
3. Transcription Factors That Impact Xist Upregulation
3.1. X-Linked TFs: XCI Activators
3.2. Autosomally Encoded TFs: Xist Repressors
3.3. Autosomally Encoded TFs: Xist Activators
4. Non-DNA-Binding Factors That Impact Xist Upregulation
4.1. X-Linked Protein Regulators: XCI Activators
4.2. Autosomally Encoded Proteins: Xist Repressors and Activators
5. Long Non-Coding RNAs That Impact Xist Expression
5.1. lncRNA Xist Repressors
5.2. lncRNA Xist Activators
6. The Chromatin Landscape at the Onset of Random XCI
6.1. Chromatin Landscape at the Tsix/Xist Tandem
6.2. Chromatin Landscape at Xist Regulators
6.3. Higher Chromatin Structure of the Xic
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.A.; Theunissen, T.W. Modeling X-Chromosome Inactivation and Reactivation during Human Development. Curr. Opin. Genet. Dev. 2023, 82, 102096. [Google Scholar] [CrossRef]
- Lyon, M.F. Possible Mechanisms of X Chromosome Inactivation. Nat. New Biol. 1971, 232, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, K.; Jonkers, I.; Rentmeester, E.; Grosveld, F.; Gribnau, J. X Inactivation Counting and Choice Is a Stochastic Process: Evidence for Involvement of an X-Linked Activator. Cell 2008, 132, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Mutzel, V.; Okamoto, I.; Dunkel, I.; Saitou, M.; Giorgetti, L.; Heard, E.; Schulz, E.G. A Symmetric Toggle Switch Explains the Onset of Random X Inactivation in Different Mammals. Nat. Struct. Mol. Biol. 2019, 26, 350–360. [Google Scholar] [CrossRef] [PubMed]
- De Andrade e Sousa, L.B.; Jonkers, I.; Syx, L.; Dunkel, I.; Chaumeil, J.; Picard, C.; Foret, B.; Chen, C.-J.; Lis, J.T.; Heard, E.; et al. Kinetics of Xist-Induced Gene Silencing Can Be Predicted from Combinations of Epigenetic and Genomic Features. Genome Res. 2019, 29, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Rastan, S.; Robertson, E.J. X-Chromosome Deletions in Embryo-Derived (EK) Cell Lines Associated with Lack of X-Chromosome Inactivation. Development 1985, 90, 379–388. [Google Scholar] [CrossRef]
- Brown, C.J.; Ballabio, A.; Rupert, J.L.; Lafreniere, R.G.; Grompe, M.; Tonlorenzi, R.; Willard, H.F. A Gene from the Region of the Human X Inactivation Centre Is Expressed Exclusively from the Inactive X Chromosome. Nature 1991, 349, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Furlan, G.; Galupa, R. Mechanisms of Choice in X-Chromosome Inactivation. Cells 2022, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Heard, E.; Mongelard, F.; Arnaud, D.; Chureau, C.; Vourc’h, C.; Avner, P. Human XIST Yeast Artificial Chromosome Transgenes Show Partial X Inactivation Center Function in Mouse Embryonic Stem Cells. Proc. Natl. Acad. Sci. USA 1999, 96, 6841–6846. [Google Scholar] [CrossRef]
- Penny, G.D.; Kay, G.F.; Sheardown, S.A.; Rastan, S.; Brockdorff, N. Requirement for Xist in X Chromosome Inactivation. Nature 1996, 379, 131–137. [Google Scholar] [CrossRef]
- Memili, E.; Hong, Y.-K.; Kim, D.-H.; Ontiveros, S.D.; Strauss, W.M. Murine Xist RNA Isoforms Are Different at Their 3′ Ends: A Role for Differential Polyadenylation. Gene 2001, 266, 131–137. [Google Scholar] [CrossRef]
- Brockdorff, N.; Ashworth, A.; Kay, G.F.; McCabe, V.M.; Norris, D.P.; Cooper, P.J.; Swift, S.; Rastan, S. The Product of the Mouse Xist Gene Is a 15 Kb Inactive X-Specific Transcript Containing No Conserved ORF and Located in the Nucleus. Cell 1992, 71, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Ogawa, Y. CRISPR/Cas9-Mediated Modulation of Splicing Efficiency Reveals Short Splicing Isoform of Xist RNA Is Sufficient to Induce X-Chromosome Inactivation. Nucleic Acids Res. 2018, 46, e26. [Google Scholar] [CrossRef]
- Lee, J.T.; Lu, N. Targeted Mutagenesis of Tsix Leads to Nonrandom X Inactivation. Cell 1999, 99, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.; Duncan, S.; Dean, C. Mutually Exclusive Sense–Antisense Transcription at FLC Facilitates Environmentally Induced Gene Repression. Nat. Commun. 2016, 7, 13031. [Google Scholar] [CrossRef] [PubMed]
- Csankovszki, G.; Panning, B.; Bates, B.; Pehrson, J.R.; Jaenisch, R. Conditional Deletion of Xist Disrupts Histone MacroH2A Localization but Not Maintenance of X Inactivation. Nat. Genet. 1999, 22, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Sheardown, S.A.; Duthie, S.M.; Johnston, C.M.; Newall, A.E.; Formstone, E.J.; Arkell, R.M.; Nesterova, T.B.; Alghisi, G.C.; Rastan, S.; Brockdorff, N. Stabilization of Xist RNA Mediates Initiation of X Chromosome Inactivation. Cell 1997, 91, 99–107. [Google Scholar] [CrossRef]
- Hendrich, B.D.; Plenge, R.M.; Willard, H.F. Identification and Characterization of the Human XIST Gene Promoter: Implications for Models of X Chromosome Inactivation. Nucleic Acids Res. 1997, 25, 2661–2671. [Google Scholar] [CrossRef]
- Johnston, C.M.; Nesterova, T.B.; Formstone, E.J.; Newall, A.E.T.; Duthie, S.M.; Sheardown, S.A.; Brockdorff, N. Developmentally Regulated Xist Promoter Switch Mediates Initiation of X Inactivation. Cell 1998, 94, 809–817. [Google Scholar] [CrossRef]
- Makhlouf, M.; Ouimette, J.F.; Oldfield, A.; Navarro, P.; Neuillet, D.; Rougeulle, C. A Prominent and Conserved Role for YY1 in Xist Transcriptional Activation. Nat. Commun. 2014, 5, 4878. [Google Scholar] [CrossRef]
- Samanta, M.K.; Gayen, S.; Harris, C.; Maclary, E.; Murata-Nakamura, Y.; Malcore, R.M.; Porter, R.S.; Garay, P.M.; Vallianatos, C.N.; Samollow, P.B.; et al. Activation of Xist by an Evolutionarily Conserved Function of KDM5C Demethylase. Nat Commun 2022, 13, 2602. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Chambers, I.; Karwacki-Neisius, V.; Chureau, C.; Morey, C.; Rougeulle, C.; Avner, P. Molecular Coupling of Xist Regulation and Pluripotency. Science 2008, 321, 1693–1695. [Google Scholar] [CrossRef] [PubMed]
- Nesterova, T.B.; Senner, C.E.; Schneider, J.; Alcayna-Stevens, T.; Tattermusch, A.; Hemberger, M.; Brockdorff, N. Pluripotency Factor Binding and Tsix Expression Act Synergistically to Repress Xist in Undifferentiated Embryonic Stem Cells. Epigenetics Chromatin 2011, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Barakat, T.S.; Gunhanlar, N.; Pardo, C.G.; Achame, E.M.; Ghazvini, M.; Boers, R.; Kenter, A.; Rentmeester, E.; Grootegoed, J.A.; Gribnau, J. RNF12 Activates Xist and Is Essential for X Chromosome Inactivation. PLoS Genet. 2011, 7, e1002001. [Google Scholar] [CrossRef] [PubMed]
- Minkovsky, A.; Barakat, T.S.; Sellami, N.; Chin, M.H.; Gunhanlar, N.; Gribnau, J.; Plath, K. The Pluripotency Factor-Bound Intron 1 of Xist Is Dispensable for X Chromosome Inactivation and Reactivation In Vitro and In Vivo. Cell Rep. 2013, 3, 905–918. [Google Scholar] [CrossRef]
- Gjaltema, R.A.F.; Schwämmle, T.; Kautz, P.; Robson, M.; Schöpflin, R.; Lustig, L.R.; Brandenburg, L.; Dunkel, I.; Vechiatto, C.; Ntini, E.; et al. Distal and Proximal Cis-Regulatory Elements Sense X Chromosome Dosage and Developmental State at the Xist Locus. Mol. Cell 2022, 82, 190–208.e17. [Google Scholar] [CrossRef] [PubMed]
- Lustig, L.R.; Kumar, A.S.; Schwämmle, T.; Dunkel, I.; Noviello, G.; Limberg, E.; Weigert, R.; Pacini, G.; Buschow, R.; Ghauri, A.; et al. GATA Transcription Factors Drive Initial Xist Upregulation after Fertilization through Direct Activation of Long-Range Enhancers. Nat. Cell Biol. 2023, 25, 1704–1715. [Google Scholar] [CrossRef]
- Shimosato, D.; Shiki, M.; Niwa, H. Extra-Embryonic Endoderm Cells Derived from ES Cells Induced by GATA Factors Acquire the Character of XEN Cells. BMC Dev. Biol. 2007, 7, 80. [Google Scholar] [CrossRef]
- Donohoe, M.E.; Silva, S.S.; Pinter, S.F.; Xu, N.; Lee, J.T. The Pluripotency Factor Oct4 Interacts with Ctcf and Also Controls X-Chromosome Pairing and Counting. Nature 2009, 460, 128–132. [Google Scholar] [CrossRef]
- Jonkers, I.; Barakat, T.S.; Achame, E.M.; Monkhorst, K.; Kenter, A.; Rentmeester, E.; Grosveld, F.; Grootegoed, J.A.; Gribnau, J. RNF12 Is an X-Encoded Dose-Dependent Activator of X Chromosome Inactivation. Cell 2009, 139, 999–1011. [Google Scholar] [CrossRef]
- Navarro, P.; Moffat, M.; Mullin, N.P.; Chambers, I. The X-Inactivation Trans-Activator Rnf12 Is Negatively Regulated by Pluripotency Factors in Embryonic Stem Cells. Hum. Genet. 2011, 130, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Oldfield, A.; Legoupi, J.; Festuccia, N.; Dubois, A.; Attia, M.; Schoorlemmer, J.; Rougeulle, C.; Chambers, I.; Avner, P. Molecular Coupling of Tsix Regulation and Pluripotency. Nature 2010, 468, 457–460. [Google Scholar] [CrossRef]
- Gontan, C.; Achame, E.M.; Demmers, J.; Barakat, T.S.; Rentmeester, E.; van Ijcken, W.; Grootegoed, J.A.; Gribnau, J. RNF12 Initiates X-Chromosome Inactivation by Targeting REX1 for Degradation. Nature 2012, 485, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Loos, F.; Maduro, C.; Loda, A.; Lehmann, J.; Kremers, G.-J.; Berge, D.T.; Grootegoed, J.A.; Gribnau, J. Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States. Mol. Cell. Biol. 2016, 36, 2656–2667. [Google Scholar] [CrossRef] [PubMed]
- Gontan, C.; Mira-Bontenbal, H.; Magaraki, A.; Dupont, C.; Barakat, T.S.; Rentmeester, E.; Demmers, J.; Gribnau, J. REX1 Is the Critical Target of RNF12 in Imprinted X Chromosome Inactivation in Mice. Nat. Commun. 2018, 9, 4752. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, M.; Seki, Y.; Kurimoto, K.; Yabuta, Y.; Yuasa, M.; Shigeta, M.; Yamanaka, K.; Ohinata, Y.; Saitou, M. Critical Function of Prdm14 for the Establishment of the Germ Cell Lineage in Mice. Nat. Genet. 2008, 40, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Swigut, T.; Valouev, A.; Rada-Iglesias, A.; Wysocka, J. Sequence-Specific Regulator Prdm14 Safeguards Mouse ESCs from Entering Extraembryonic Endoderm Fates. Nat. Struct. Mol. Biol. 2011, 18, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Payer, B.; Rosenberg, M.; Yamaji, M.; Yabuta, Y.; Koyanagi-Aoi, M.; Hayashi, K.; Yamanaka, S.; Saitou, M.; Lee, J.T. Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Mol. Cell 2013, 52, 805–818. [Google Scholar] [CrossRef]
- Dehingia, B.; Milewska, M.; Janowski, M.; Pękowska, A. CTCF Shapes Chromatin Structure and Gene Expression in Health and Disease. EMBO Rep. 2022, 23, e55146. [Google Scholar] [CrossRef]
- Donohoe, M.E.; Zhang, L.-F.; Xu, N.; Shi, Y.; Lee, J.T. Identification of a Ctcf Cofactor, Yy1, for the X Chromosome Binary Switch. Mol. Cell 2007, 25, 43–56. [Google Scholar] [CrossRef]
- Sun, S.; Rosario, B.C.D.; Szanto, A.; Ogawa, Y.; Jeon, Y.; Lee, J.T. Jpx RNA Activates Xist by Evicting CTCF. Cell 2013, 153, 1537–1551. [Google Scholar] [CrossRef]
- Spencer, R.J.; del Rosario, B.C.; Pinter, S.F.; Lessing, D.; Sadreyev, R.I.; Lee, J.T. A Boundary Element Between Tsix and Xist Binds the Chromatin Insulator Ctcf and Contributes to Initiation of X-Chromosome Inactivation. Genetics 2011, 189, 441–454. [Google Scholar] [CrossRef]
- Samata, M.; Akhtar, A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu. Rev. Biochem. 2018, 87, 323–350. [Google Scholar] [CrossRef] [PubMed]
- Chelmicki, T.; Dündar, F.; Turley, M.J.; Khanam, T.; Aktas, T.; Ramírez, F.; Gendrel, A.-V.; Wright, P.R.; Videm, P.; Backofen, R.; et al. MOF-Associated Complexes Ensure Stem Cell Identity and Xist Repression. eLife 2014, 3, e02024. [Google Scholar] [CrossRef] [PubMed]
- Verheul, T.C.J.; van Hijfte, L.; Perenthaler, E.; Barakat, T.S. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front. Cell Dev. Biol. 2020, 8, 592164. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Faulk, C.; Kim, J. Retroposition and Evolution of the DNA-Binding Motifs of YY1, YY2 and REX1. Nucleic Acids Res. 2007, 35, 3442–3452. [Google Scholar] [CrossRef] [PubMed]
- Cerase, A.; Young, A.N.; Ruiz, N.B.; Buness, A.; Sant, G.M.; Arnold, M.; Giacomo, M.D.; Ascolani, M.; Kumar, M.; Hierholzer, A.; et al. Chd8 Regulates X Chromosome Inactivation in Mouse through Fine-Tuning Control of Xist Expression. Commun. Biol. 2021, 4, 485. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Lee, J.T. YY1 Tethers Xist RNA to the Inactive X Nucleation Center. Cell 2011, 146, 119–133. [Google Scholar] [CrossRef]
- Shin, J.; Wallingford, M.C.; Gallant, J.; Marcho, C.; Jiao, B.; Byron, M.; Bossenz, M.; Lawrence, J.B.; Jones, S.N.; Mager, J.; et al. RLIM Is Dispensable for X-Chromosome Inactivation in the Mouse Embryonic Epiblast. Nature 2014, 511, 86–89. [Google Scholar] [CrossRef]
- Wang, F.; McCannell, K.N.; Bošković, A.; Zhu, X.; Shin, J.; Yu, J.; Gallant, J.; Byron, M.; Lawrence, J.B.; Zhu, L.J.; et al. Rlim-Dependent and -Independent Pathways for X Chromosome Inactivation in Female ESCs. Cell Rep. 2017, 21, 3691–3699. [Google Scholar] [CrossRef]
- Shin, J.; Bossenz, M.; Chung, Y.; Ma, H.; Byron, M.; Taniguchi-Ishigaki, N.; Zhu, X.; Jiao, B.; Hall, L.L.; Green, M.R.; et al. Maternal Rnf12/RLIM Is Required for Imprinted X-Chromosome Inactivation in Mice. Nature 2010, 467, 977–981. [Google Scholar] [CrossRef]
- Arnold, A.P. X Chromosome Agents of Sexual Differentiation. Nat. Rev. Endocrinol. 2022, 18, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, J.; Ma, L.; Fang, H.; Ma, R.; Groneck, C.; Filippova, G.N.; Deng, X.; Ma, W.; Disteche, C.M.; et al. KDM6A Facilitates Xist Upregulation at the Onset of X Inactivation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Outchkourov, N.S.; Muiño, J.M.; Kaufmann, K.; van IJcken, W.F.J.; Koerkamp, M.J.G.; van Leenen, D.; de Graaf, P.; Holstege, F.C.P.; Grosveld, F.G.; Timmers, H.T.M. Balancing of Histone H3K4 Methylation States by the Kdm5c/SMCX Histone Demethylase Modulates Promoter and Enhancer Function. Cell Rep. 2013, 3, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Agger, K.; Cloos, P.A.C.; Christensen, J.; Pasini, D.; Rose, S.; Rappsilber, J.; Issaeva, I.; Canaani, E.; Salcini, A.E.; Helin, K. UTX and JMJD3 Are Histone H3K27 Demethylases Involved in HOX Gene Regulation and Development. Nature 2007, 449, 731–734. [Google Scholar] [CrossRef]
- Shpargel, K.B.; Starmer, J.; Yee, D.; Pohlers, M.; Magnuson, T. KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development. PLoS Genet. 2014, 10, e1004507. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhang, Q.C.; da Rocha, S.T.; Flynn, R.A.; Bharadwaj, M.; Calabrese, J.M.; Magnuson, T.; Heard, E.; Chang, H.Y. Systematic Discovery of Xist RNA Binding Proteins. Cell 2015, 161, 404–416. [Google Scholar] [CrossRef]
- McHugh, C.A.; Chen, C.-K.; Chow, A.; Surka, C.F.; Tran, C.; McDonel, P.; Pandya-Jones, A.; Blanco, M.; Burghard, C.; Moradian, A.; et al. The Xist LncRNA Interacts Directly with SHARP to Silence Transcription through HDAC3. Nature 2015, 521, 232–236. [Google Scholar] [CrossRef]
- Minajigi, A.; Froberg, J.E.; Wei, C.; Sunwoo, H.; Kesner, B.; Colognori, D.; Lessing, D.; Payer, B.; Boukhali, M.; Haas, W.; et al. A Comprehensive Xist Interactome Reveals Cohesin Repulsion and an RNA-Directed Chromosome Conformation. Science 2015, 349, aab2276. [Google Scholar] [CrossRef]
- Monfort, A.; Minin, G.D.; Postlmayr, A.; Freimann, R.; Arieti, F.; Thore, S.; Wutz, A. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Rep. 2015, 12, 554–561. [Google Scholar] [CrossRef]
- Moindrot, B.; Cerase, A.; Coker, H.; Masui, O.; Grijzenhout, A.; Pintacuda, G.; Schermelleh, L.; Nesterova, T.B.; Brockdorff, N. A Pooled ShRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing. Cell Rep. 2015, 12, 562–572. [Google Scholar] [CrossRef]
- Shi, Y.; Downes, M.; Xie, W.; Kao, H.-Y.; Ordentlich, P.; Tsai, C.-C.; Hon, M.; Evans, R.M. Sharp, an Inducible Cofactor That Integrates Nuclear Receptor Repression and Activation. Genes Dev. 2001, 15, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Dossin, F.; Pinheiro, I.; Żylicz, J.J.; Roensch, J.; Collombet, S.; Saux, A.L.; Chelmicki, T.; Attia, M.; Kapoor, V.; Zhan, Y.; et al. SPEN Integrates Transcriptional and Epigenetic Control of X-Inactivation. Nature 2020, 578, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.; Wutz, A. IndiSPENsable for X Chromosome Inactivation and Gene Silencing. Epigenomes 2023, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Robert-Finestra, T.; Tan, B.F.; Mira-Bontenbal, H.; Timmers, E.; Gontan, C.; Merzouk, S.; Giaimo, B.D.; Dossin, F.; van IJcken, W.F.J.; Martens, J.W.M.; et al. SPEN Is Required for Xist Upregulation during Initiation of X Chromosome Inactivation. Nat. Commun. 2021, 12, 7000. [Google Scholar] [CrossRef] [PubMed]
- Mutzel, V.; Schulz, E.G. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. BioEssays 2020, 42, e1900163. [Google Scholar] [CrossRef]
- Jachowicz, J.W.; Strehle, M.; Banerjee, A.K.; Blanco, M.R.; Thai, J.; Guttman, M. Xist Spatially Amplifies SHARP/SPEN Recruitment to Balance Chromosome-Wide Silencing and Specificity to the X Chromosome. Nat. Struct. Mol. Biol. 2022, 29, 239–249. [Google Scholar] [CrossRef]
- Masai, H.; Tanaka, T. G-Quadruplex DNA and RNA: Their Roles in Regulation of DNA Replication and Other Biological Functions. Biochem. Biophys. Res. Commun. 2020, 531, 25–38. [Google Scholar] [CrossRef]
- Daxinger, L.; Harten, S.K.; Oey, H.; Epp, T.; Isbel, L.; Huang, E.; Whitelaw, N.; Apedaile, A.; Sorolla, A.; Yong, J.; et al. An ENU Mutagenesis Screen Identifies Novel and Known Genes Involved in Epigenetic Processes in the Mouse. Genome Biol. 2013, 14, R96. [Google Scholar] [CrossRef]
- Richards, L.; Das, S.; Nordman, J.T. Rif1-Dependent Control of Replication Timing. Genes 2022, 13, 550. [Google Scholar] [CrossRef]
- Iyengar, S.; Farnham, P.J. KAP1 Protein: An Enigmatic Master Regulator of the Genome. J. Biol. Chem. 2011, 286, 26267–26276. [Google Scholar] [CrossRef]
- Enervald, E.; Powell, L.M.; Boteva, L.; Foti, R.; Ruiz, N.B.; Kibar, G.; Piszczek, A.; Cavaleri, F.; Vingron, M.; Cerase, A.; et al. RIF1 and KAP1 Differentially Regulate the Choice of Inactive versus Active X Chromosomes. EMBO J. 2021, 40, e105862. [Google Scholar] [CrossRef] [PubMed]
- Debrand, E.; Chureau, C.; Arnaud, D.; Avner, P.; Heard, E. Functional Analysis of the DXPas34 Locus, a 3’ Regulator of Xist Expression. Mol. Cell. Biol. 1999, 19, 8513–8525. [Google Scholar] [CrossRef] [PubMed]
- Luikenhuis, S.; Wutz, A.; Jaenisch, R. Antisense Transcription through the Xist Locus Mediates Tsix Function in Embryonic Stem Cells. Mol. Cell. Biol. 2001, 21, 8512–8520. [Google Scholar] [CrossRef]
- Shibata, S.; Lee, J.T. Tsix Transcription- versus RNA-Based Mechanisms in Xist Repression and Epigenetic Choice. Curr. Biol. 2004, 14, 1747–1754. [Google Scholar] [CrossRef]
- Sun, B.K.; Deaton, A.M.; Lee, J.T. A Transient Heterochromatic State in Xist Preempts X Inactivation Choice without RNA Stabilization. Mol. Cell 2006, 21, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Pichard, S.; Ciaudo, C.; Avner, P.; Rougeulle, C. Tsix Transcription across the Xist Gene Alters Chromatin Conformation without Affecting Xist Transcription: Implications for X-Chromosome Inactivation. Genes Dev. 2005, 19, 1474–1484. [Google Scholar] [CrossRef]
- Navarro, P.; Page, D.R.; Avner, P.; Rougeulle, C. Tsix-Mediated Epigenetic Switch of a CTCF-Flanked Region of the Xist Promoter Determines the Xist Transcription Program. Genes Dev. 2006, 20, 2787–2792. [Google Scholar] [CrossRef]
- Sado, T.; Hoki, Y.; Sasaki, H. Tsix Silences Xist through Modification of Chromatin Structure. Dev. Cell 2005, 9, 159–165. [Google Scholar] [CrossRef]
- Ohhata, T.; Hoki, Y.; Sasaki, H.; Sado, T. Crucial Role of Antisense Transcription across the Xist Promoter in Tsix-Mediated Xist Chromatin Modification. Development 2008, 135, 227–235. [Google Scholar] [CrossRef]
- Giorgetti, L.; Galupa, R.; Nora, E.P.; Piolot, T.; Lam, F.; Dekker, J.; Tiana, G.; Heard, E. Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription. Cell 2014, 157, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Lee, J.T. Xite, X-Inactivation Intergenic Transcription Elements That Regulate the Probability of Choice. Mol. Cell 2003, 11, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Galupa, R.; Nora, E.P.; Worsley-Hunt, R.; Picard, C.; Gard, C.; van Bemmel, J.G.; Servant, N.; Zhan, Y.; Marjou, F.E.; Johanneau, C.; et al. A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Mol. Cell 2020, 77, 352–367.e8. [Google Scholar] [CrossRef] [PubMed]
- Nora, E.P.; Lajoie, B.R.; Schulz, E.G.; Giorgetti, L.; Okamoto, I.; Servant, N.; Piolot, T.; van Berkum, N.L.; Meisig, J.; Sedat, J.; et al. Spatial Partitioning of the Regulatory Landscape of the X-Inactivation Centre. Nature 2012, 485, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, A.; Chureau, C.; Liverziani, A.; Ruiz, N.B.; Cattanach, B.M.; Young, A.N.; Kumar, M.; Cerase, A.; Avner, P. A Long Noncoding RNA Influences the Choice of the X Chromosome to Be Inactivated. Proc. Natl. Acad. Sci. USA 2022, 119, e2118182119. [Google Scholar] [CrossRef] [PubMed]
- Cattanach, B.M.; Williams, C.E. Evidence of Non-Random X Chromosome Activity in the Mouse. Genet. Res. 1972, 19, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Galupa, R. Lppnx LncRNA: The New Kid on the Block or an Old Friend in X-Inactivation Choice? Proc. Natl. Acad. Sci. USA 2023, 120, e2218989120. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, A.; Cerase, A.; Avner, P. Reply to Rafael Galupa: Discussing the Role of Lppnx in the Complexity of the X Controlling Element, Xce. Proc. Natl. Acad. Sci. USA 2023, 120, e2219685120. [Google Scholar] [CrossRef]
- Anguera, M.C.; Ma, W.; Clift, D.; Namekawa, S.; Kelleher, R.J.; Lee, J.T. Tsx Produces a Long Noncoding RNA and Has General Functions in the Germline, Stem Cells, and Brain. PLoS Genet. 2011, 7, e1002248. [Google Scholar] [CrossRef]
- Johnston, C.M.; Newall, A.E.T.; Brockdorff, N.; Nesterova, T.B. Enox, a Novel Gene That Maps 10 Kb Upstream of Xist and Partially Escapes X Inactivation. Genomics 2002, 80, 236–244. [Google Scholar] [CrossRef]
- Tian, D.; Sun, S.; Lee, J.T. The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation. Cell 2010, 143, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Carmona, S.; Lin, B.; Chou, T.; Arroyo, K.; Sun, S. LncRNA Jpx Induces Xist Expression in Mice Using Both Trans and Cis Mechanisms. PLoS Genet. 2018, 14, e1007378. [Google Scholar] [CrossRef] [PubMed]
- Barakat, T.S.; Loos, F.; van Staveren, S.; Myronova, E.; Ghazvini, M.; Grootegoed, J.A.; Gribnau, J. The Trans-Activator RNF12 and Cis-Acting Elements Effectuate X Chromosome Inactivation Independent of X-Pairing. Mol. Cell 2014, 53, 965–978. [Google Scholar] [CrossRef]
- Yin, H.; Wei, C.; Lee, J.T. Revisiting the Consequences of Deleting the X Inactivation Center. Proc. Natl. Acad. Sci. USA 2021, 118, e2102683118. [Google Scholar] [CrossRef] [PubMed]
- Rosspopoff, O.; Cazottes, E.; Huret, C.; Loda, A.; Collier, A.J.; Casanova, M.; Rugg-Gunn, P.J.; Heard, E.; Ouimette, J.-F.; Rougeulle, C. Species-Specific Regulation of XIST by the JPX/FTX Orthologs. Nucleic Acids Res. 2023, 51, 2177–2194. [Google Scholar] [CrossRef] [PubMed]
- Chureau, C.; Chantalat, S.; Romito, A.; Galvani, A.; Duret, L.; Avner, P.; Rougeulle, C. Ftx Is a Non-Coding RNA Which Affects Xist Expression and Chromatin Structure within the X-Inactivation Center Region. Hum. Mol. Genet. 2011, 20, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Furlan, G.; Hernandez, N.G.; Huret, C.; Galupa, R.; van Bemmel, J.G.; Romito, A.; Heard, E.; Morey, C.; Rougeulle, C. The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Mol. Cell 2018, 70, 462–472.e8. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, Y.; Soma, M.; Shiura, H.; Sado, T.; Hasuwa, H.; Abe, K.; Kohda, T.; Ishino, F.; Kobayashi, S. Female Mice Lacking Ftx LncRNA Exhibit Impaired X-Chromosome Inactivation and a Microphthalmia-like Phenotype. Nat. Commun. 2018, 9, 3829. [Google Scholar] [CrossRef]
- Ohhata, T.; Matsumoto, M.; Leeb, M.; Shibata, S.; Sakai, S.; Kitagawa, K.; Niida, H.; Kitagawa, M.; Wutz, A. Histone H3 Lysine 36 Trimethylation Is Established over the Xist Promoter by Antisense Tsix Transcription and Contributes to Repressing Xist Expression. Mol. Cell. Biol. 2015, 35, 3909–3920. [Google Scholar] [CrossRef]
- Inoue, A.; Jiang, L.; Lu, F.; Zhang, Y. Genomic Imprinting of Xist by Maternal H3K27me3. Genes Dev. 2017, 31, 1927–1932. [Google Scholar] [CrossRef]
- Ohhata, T.; Yamazawa, K.; Miura-Kamio, A.; Takahashi, S.; Sakai, S.; Tamura, Y.; Uchida, C.; Kitagawa, K.; Niida, H.; Hiratani, I.; et al. Dynamics of Transcription-Mediated Conversion from Euchromatin to Facultative Heterochromatin at the Xist Promoter by Tsix. Cell Rep. 2021, 34, 108912. [Google Scholar] [CrossRef]
- Żylicz, J.J.; Bousard, A.; Žumer, K.; Dossin, F.; Mohammad, E.; da Rocha, S.T.; Schwalb, B.; Syx, L.; Dingli, F.; Loew, D.; et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell 2019, 176, 182–197.e23. [Google Scholar] [CrossRef] [PubMed]
- Chiba, H.; Hirasawa, R.; Kaneda, M.; Amakawa, Y.; Li, E.; Sado, T.; Sasaki, H. De Novo DNA Methylation Independent Establishment of Maternal Imprint on X Chromosome in Mouse Oocytes. Genesis 2008, 46, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Rougeulle, C.; Chaumeil, J.; Sarma, K.; Allis, C.D.; Reinberg, D.; Avner, P.; Heard, E. Differential Histone H3 Lys-9 and Lys-27 Methylation Profiles on the X Chromosome. Mol. Cell. Biol. 2004, 24, 5475–5484. [Google Scholar] [CrossRef]
- Navarro, P.; Chantalat, S.; Foglio, M.; Chureau, C.; Vigneau, S.; Clerc, P.; Avner, P.; Rougeulle, C. A Role for Non-Coding Tsix Transcription in Partitioning Chromatin Domains within the Mouse X-Inactivation Centre. Epigenet. Chromatin 2009, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.; Marti-Renom, M.A.; Mirny, L.A. Exploring the Three-Dimensional Organization of Genomes: Interpreting Chromatin Interaction Data. Nat. Rev. Genet. 2013, 14, 390–403. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Rowntree, R.K.; Cohen, D.E.; Lee, J.T. Higher Order Chromatin Structure at the X-Inactivation Center via Looping DNA. Dev. Biol. 2008, 319, 416–425. [Google Scholar] [CrossRef]
- Van Bemmel, J.G.; Galupa, R.; Gard, C.; Servant, N.; Picard, C.; Davies, J.; Szempruch, A.J.; Zhan, Y.; Żylicz, J.J.; Nora, E.P.; et al. The Bipartite TAD Organization of the X-Inactivation Center Ensures Opposing Developmental Regulation of Tsix and Xist. Nat. Genet. 2019, 51, 1024–1034. [Google Scholar] [CrossRef] [PubMed]
- Galupa, R.; Picard, C.; Servant, N.; Nora, E.P.; Zhan, Y.; van Bemmel, J.G.; Marjou, F.E.; Johanneau, C.; Borensztein, M.; Ancelin, K.; et al. Inversion of a Topological Domain Leads to Restricted Changes in Its Gene Expression and Affects Interdomain Communication. Development 2022, 149, dev200568. [Google Scholar] [CrossRef]
- Ciaudo, C.; Bourdet, A.; Cohen-Tannoudji, M.; Dietz, H.C.; Rougeulle, C.; Avner, P. Nuclear MRNA Degradation Pathway(s) Are Implicated in Xist Regulation and X Chromosome Inactivation. PLoS Genet. 2006, 2, e94. [Google Scholar] [CrossRef]
- Couger, M.B.; Roy, S.W.; Anderson, N.; Gozashti, L.; Pirro, S.; Millward, L.S.; Kim, M.; Kilburn, D.; Liu, K.J.; Wilson, T.M.; et al. Sex Chromosome Transformation and the Origin of a Male-Specific X Chromosome in the Creeping Vole. Science 2021, 372, 592–600. [Google Scholar] [CrossRef]
- Guerra-Almeida, D.; Tschoeke, D.A.; Nunes-da-Fonseca, R. Understanding Small ORF Diversity through a Comprehensive Transcription Feature Classification. DNA Res. 2021, 28, dsab007. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchsinger-Morcelle, S.J.; Gribnau, J.; Mira-Bontenbal, H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. Epigenomes 2024, 8, 6. https://doi.org/10.3390/epigenomes8010006
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. Epigenomes. 2024; 8(1):6. https://doi.org/10.3390/epigenomes8010006
Chicago/Turabian StyleLuchsinger-Morcelle, Samuel Jesus, Joost Gribnau, and Hegias Mira-Bontenbal. 2024. "Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation" Epigenomes 8, no. 1: 6. https://doi.org/10.3390/epigenomes8010006
APA StyleLuchsinger-Morcelle, S. J., Gribnau, J., & Mira-Bontenbal, H. (2024). Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. Epigenomes, 8(1), 6. https://doi.org/10.3390/epigenomes8010006