Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity
Abstract
:1. Introduction
2. Results
2.1. A Dramatic Change in the Epigenome of Quiescent Cells
2.2. Changes in Genes in TSS and ORF Regions
2.3. Gene Expression Changes Compared to Epigenome Changes
2.4. Chromatin State Changes vs. Gene Expression Changes in Quiescent Cells
2.5. Epigenome Changes at Upregulated Core Quiescence Genes
2.6. Gene Expression Changes in Core Quiescence Genes in a Set1C/COMPASS Mutant
3. Discussion
3.1. Strong Changes of the Epigenome in Quiescent Fission Yeast Cells
3.2. A Conserved Role for H3K4 Methylation in Quiescent Cells
3.3. Different Mechanisms for Activation for Early and Core Quiescence Genes
3.4. Core Quiescence Genes Require Set1C Activity for Their Induction in Q Cells
3.5. A Direct Role for H3K4me3 in Activation of Quiescence Genes?
3.6. Quiescence Mortality Phenotypes of Set1C/COMPASS Mutants
4. Materials and Methods
4.1. Cell Culture
4.2. RNA Extraction and qRT-PCR
4.3. Chromatin Immunoprecipitation Sequencing (ChIP-seq)
4.4. Bioinformatics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Morree, A.; Rando, T.A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat. Rev. Mol. Cell Biol. 2023, 24, 334–354. [Google Scholar]
- Roche, B.; Arcangioli, B.; Martienssen, R. Transcriptional reprogramming in cellular quiescence. RNA Biol. 2017, 14, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Ajani, J.A.; Song, S. Drug resistance and Cancer stem cells. Cell Commun. Signal 2021, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Hayles, J.; Nurse, P. Introduction to Fission Yeast as a Model System. Cold Spring Harb. Protoc. 2018, 2018, pdb-top079749. [Google Scholar] [CrossRef] [PubMed]
- Sajiki, K.; Hatanaka, M.; Nakamura, T.; Takeda, K.; Shimanuki, M.; Yoshida, T.; Hanyu, Y.; Hayashi, T.; Nakaseko, Y.; Yanagida, M. Genetic control of cellular quiescence in S. pombe. J. Cell Sci. 2009, 122 Pt 9, 1418–1429. [Google Scholar] [CrossRef]
- Yanagida, M. Cellular quiescence: Are controlling genes conserved? Trends Cell Biol. 2009, 19, 705–715. [Google Scholar] [CrossRef]
- Allshire, R.C.; Ekwall, K. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb. Perspect. Biol. 2015, 7, a018770. [Google Scholar] [CrossRef]
- Bonitto, K.; Sarathy, K.; Atai, K.; Mitra, M.; Coller, H.A. Is There a Histone Code for Cellular Quiescence? Front. Cell Dev. Biol. 2021, 9, 739780. [Google Scholar] [CrossRef]
- Roche, B.; Arcangioli, B.; Martienssen, R.A. RNA interference is essential for cellular quiescence. Science 2016, 354, aah5651. [Google Scholar] [CrossRef]
- Joh, R.I.; Khanduja, J.S.; Calvo, I.A.; Mistry, M.; Palmieri, C.M.; Savol, A.J.; Sui, S.J.; Sadreyev, R.I.; Aryee, M.J.; Motamedi, M.; et al. Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs. Mol. Cell 2016, 64, 1088–1101. [Google Scholar] [CrossRef]
- Zahedi, Y.; Durand-Dubief, M.; Ekwall, K. High-Throughput Flow Cytometry Combined with Genetic Analysis Brings New Insights into the Understanding of Chromatin Regulation of Cellular Quiescence. Int. J. Mol. Sci. 2020, 21, 9022. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, Y.; Zeng, S.; Ekwall, K. An essential role for the Ino80 chromatin remodeling complex in regulation of gene expression during cellular quiescence. Chromosome Res. 2023, 31, 14. [Google Scholar] [CrossRef] [PubMed]
- Dehé, P.-M.; Dichtl, B.; Schaft, D.; Roguev, A.; Pamblanco, M.; Lebrun, R.; Rodríguez-Gil, A.; Mkandawire, M.; Landsberg, K.; Shevchenko, A.; et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J. Biol. Chem. 2006, 281, 35404–35412. [Google Scholar] [CrossRef] [PubMed]
- Marguerat, S.; Schmidt, A.; Codlin, S.; Chen, W.; Aebersold, R.; Bähler, J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012, 151, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Young, C.P.; Hillyer, C.; Hokamp, K.; Fitzpatrick, D.J.; Konstantinov, N.K.; Welty, J.S.; Ness, S.A.; Werner-Washburne, M.; Fleming, A.B.; Osley, M.A. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genom. 2017, 18, 107. [Google Scholar] [CrossRef]
- Lee, J.; Kang, S.; Lilja, K.C.; Colletier, K.J.; Scheitz, C.J.; Zhang, Y.V.; Tumbar, T. Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis. Nat. Commun. 2016, 7, 11278. [Google Scholar] [CrossRef]
- Smith, E.; Shilatifard, A. Transcriptional elongation checkpoint control in development and disease. Genes Dev. 2013, 27, 1079–1088. [Google Scholar] [CrossRef]
- Wang, H.; Fan, Z.; Shliaha, P.V.; Miele, M.; Hendrickson, R.C.; Jiang, X.; Helin, K. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 2023, 615, 339–348. [Google Scholar] [CrossRef]
- Larochelle, M.; Robert, M.-A.; Hébert, J.-N.; Liu, X.; Matteau, D.; Rodrigue, S.; Tian, B.; Jacques, P.; Bachand, F. Common mechanism of transcription termination at coding and noncoding RNA genes in fission yeast. Nat. Commun. 2018, 9, 4364. [Google Scholar] [CrossRef]
- Roguev, A.; Schaft, D.; Shevchenko, A.; Pijnappel, W.; Wilm, M.; Aasland, R.; Stewart, A. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 2001, 20, 7137–7148. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
Systematic Gene Name | Gene Name/ GO Molecular Function | Chromatin State in Q Cells |
---|---|---|
Active | ||
SPAC1002.19 | urg1/ GTP cyclohydrolase | Active |
SPAC1039.10 | mmf2/ mitochondrial matrix protein | Active |
SPAC11D3.19 | Active | |
SPAC2H10.01 | transcription factor | Active |
SPAC3C7.02c | pil2/ meiotic eisosome | Active |
SPAC3G9.11c | pdc201/ pyruvate decarboxylase | Active |
SPAC869.01 | hydrolase, cellular detoxification | Active |
SPAC869.03c | urea transmembrane transporter | Active |
SPAC869.04 | formamidase, cellular detoxification | Active |
SPAC869.06c | hry1/ cation binding protein | Active |
SPAC869.07c | mel1/ alpha-galactosidase | Active |
SPAC869.08 | mel2/ isoaspartate methyltransferase | Active |
SPAC869.09 | Active | |
SPAC9E9.17c | Active | |
SPAPB8E5.05 | mfm1/ M-factor precursor | Active |
SPAPJ691.02 | Active | |
SPBC354.12 | gpd3/ glyceraldehyde dehydrogenase | Active |
SPBPB21E7.02c | phosphoglycerate mutase | Active |
SPBPB21E7.10 | Active | |
SPBPB21E7.11 | Active | |
SPCC338.18 | Active | |
SPCC417.02 | dad5/ DASH complex subunit | Active |
SPCC550.07 | fah2/ fatty-acid amide hydrolase | Active |
SPCC965.13 | transmembrane transporter | Active |
SPNCRNA.1415 | non-coding RNA | Active |
SPNCRNA.1530 | non-coding RNA | Active |
SPNCRNA.1670 | non-coding RNA | Active |
SPNCRNA.352 | non-coding RNA | Active |
SPNCRNA.51 | non-coding RNA | Active |
SPNCRNA.577 | non-coding RNA | Active |
SPNCRNA.607 | non-coding RNA | Active |
SPNCRNA.877 | non-coding RNA | Active |
SPNCRNA.987 | non-coding RNA | Active |
SPAC1834.04 | hht1/ histone H3 | Repressed |
SPAC30D11.11 | izh3/ ER membrane protein | Repressed |
SPAC31G5.04 | lys12/ homoisocitrate dehydrogenase | Repressed |
SPBC1711.07 | rrb1/ chaperone for ribosomal protein | Repressed |
SPCC74.05 | rpl2702/ 60S ribosomal protein | Repressed |
SPNCRNA.1461 | non-coding RNA | Repressed |
SPNCRNA.979 | non-coding RNA | Repressed |
Strain Number | Genotype | Reference |
---|---|---|
Hu3112 | mat1-M smt-0 pht1-myc | [12] |
Hu2909 | mat1-M smt-0 | [11] |
Hu3119 | mat1-M smt-0 set1Δ::kanMX | [11] |
Gene | Forward | Reverse |
---|---|---|
SPAC869.09 | GCCTGATCCTGCACATATTATCG | TTTGCATGACGCCTACCTTTCTG |
mel1 | GTTACAAGCGAATGTCTGATGCTC | ATACTCCTCAAAGCTCATACCTCC |
SPAC869.06c | GTCGGCAAACGACTATGATACTG | AATATCATGTTGCTCCTCCTCGTC |
SPAC869.04 | AAATAAACCTGCATGGGAGCAACC | AATCCTCCTCCATTCTCTTTCG |
SPAC869.03c | ACCAGGGATATGGATATGGAATCG | CACATACTTCCACATACGCCATAC |
SPBPB21E7.02c | GCCCTTCATAATTGGTTGGTTGAC | GTTCCGTATAATCCTCGTCTCAGTG |
SPBPB21E7.10 | GTTGAAAGGAGAAGTCGAAGAAGG | CTATTCGCTCTCCTTTCTTTCACC |
SPBPB21E7.11 | TGTTATGCGTGCGTTCTTCATCC | TGATTGAGTATCAGGTGCGCTTG |
gmh2 | CTTGATTGCTGGCGCGTTTCTATAC | TTTGCTGAGGCTCTGACTCGTATG |
SPRRNA.47(rRNA) | TAGCCAAATGCCTCGTCATC | CATACTCCCACTTATCCTACACCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Ekwall, K. Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity. Epigenomes 2024, 8, 39. https://doi.org/10.3390/epigenomes8040039
Zeng S, Ekwall K. Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity. Epigenomes. 2024; 8(4):39. https://doi.org/10.3390/epigenomes8040039
Chicago/Turabian StyleZeng, Shengyuan, and Karl Ekwall. 2024. "Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity" Epigenomes 8, no. 4: 39. https://doi.org/10.3390/epigenomes8040039
APA StyleZeng, S., & Ekwall, K. (2024). Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity. Epigenomes, 8(4), 39. https://doi.org/10.3390/epigenomes8040039