Influence of Sociodemographic and Social Variables on the Relationship between Formal Years of Education and Time Spent on the Internet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Measures
2.2.1. Sociodemographic Items
2.2.2. Social Items
2.2.3. Internet Items
2.3. Data Analysis
2.4. Sample
3. Results
3.1. Regressions
3.2. Moderations
3.3. Confirmatory Factorial Analysis
3.4. Measurement Invariance
3.5. K-Means Clustering Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista. Global Internet Penetration Rate as of October 2023, by Region. 2023. Available online: https://www.statista.com/statistics/269329/penetration-rate-of-the-internet-by-region/ (accessed on 31 January 2024).
- Žmuk, B.; Qureshi, F.H.; Khawaja, S. Inequality in E-Learning In European Union Countries: Role of Gender, Education and Urban Development. Interdiscip. Descr. Complex Syst. 2023, 21, 441–457. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R. Analysis of European competitiveness based on its innovative capacity and digitalization level. Technol. Soc. 2023, 72, 102206. [Google Scholar] [CrossRef]
- Xu, K.; Loh, L.; Liang, L.; Mei, R. Heterogeneous effects of influencing factors on innovation performance: Evidence from European Union countries. Technol. Anal. Strat. Manag. 2023, 1–16. [Google Scholar] [CrossRef]
- Abebe, I.; Wang, Y.-W.; O’connor, S.; Cruz, T.E.; Keum, B.T.; Sifat, M. Satisfaction with online/in-person social interactions and psychological well-being: The mediating role of social connectedness. Curr. Psychol. 2023, 43, 8678–8687. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wang, Z.; Cheng, Y. Does digitalization mitigate regional inequalities? Evidence from China. Geogr. Sustain. 2024, 5, 52–63. [Google Scholar] [CrossRef]
- Hambly, H.; Rajabiun, R. Rural broadband: Gaps, maps and challenges. Telemat. Inform. 2021, 60, 101565. [Google Scholar] [CrossRef]
- Thonipara, A.; Sternberg, R.; Proeger, T.; Haefner, L. Digital divide, craft firms’ websites and urban-rural dispari-ties—Empirical evidence from a web-scraping approach. Rev. Reg. Res. 2023, 43, 69–99. [Google Scholar] [CrossRef]
- van Maarseveen, R. The urban–rural education gap: Do cities indeed make us smarter? J. Econ. Geogr. 2021, 21, 683–714. [Google Scholar] [CrossRef]
- Verde, L.; Barrea, L.; Bowman-Busato, J.; Yumuk, V.D.; Colao, A.; Muscogiuri, G. Obesogenic environments as major determinants of a disease: It is time to re-shape our cities. Diabetes/Metab. Res. Rev. 2024, 40, e3748. [Google Scholar] [CrossRef]
- Goodspeed, R. Community and urban places in a digital world. City Community 2017, 16, 9–15. [Google Scholar] [CrossRef]
- Hall, J.A. Relating through Technology: Everyday Social Interaction; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Hatuka, T.; Zur, H.; Mendoza, J.A. The urban digital lifestyle: An analytical framework for placing digital practices in a spatial context and for developing applicable policy. Cities 2020, 111, 102978. [Google Scholar] [CrossRef]
- Caprotti, F.; Chang, I.-C.C.; Joss, S. Beyond the smart city: A typology of platform urbanism. Urban Transform. 2022, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kobul, M.K. Socioeconomic status influences Turkish digital natives’ internet use habitus. Behav. Inf. Technol. 2023, 42, 624–642. [Google Scholar] [CrossRef]
- Baloğlu, M.; Şahin, R.; Arpaci, I. A review of recent research in problematic internet use: Gender and cultural differences. Curr. Opin. Psychol. 2020, 36, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Auxier, B.; Anderson, M. Social media use in 2021. Pew Res. Cent. 2021, 1, 1–4. [Google Scholar]
- Tong, Q.; Chu, C.-Y.; Zhou, D.; Feng, Y. Does internet connectedness disconnect marriage? A micro empirical analysis. Soc. Indic. Res. 2021, 158, 143–176. [Google Scholar] [CrossRef]
- Mossberger, K.; Tolbert, C.J.; McNeal, R.S. Excerpts from digital citizenship: The internet, society, and participation (Cambridge, Mass.: MIT Press, 2007). First Monday 2008, 13. [Google Scholar] [CrossRef]
- Kincl, T.; Štrach, P. Born digital: Is there going to be a new culture of digital natives? J. Glob. Sch. Mark. Sci. 2021, 31, 30–48. [Google Scholar] [CrossRef]
- Lieberman, A.; Schroeder, J. Two social lives: How differences between online and offline interaction influence social outcomes. Curr. Opin. Psychol. 2020, 31, 16–21. [Google Scholar] [CrossRef]
- Haley, M.R.; Miller, L.A. Correlates of flexible working arrangements, stress, and sleep difficulties in the US work-force: Does the flexibility of the flexibility matter? Empir. Econ. 2015, 48, 1395–1418. [Google Scholar] [CrossRef]
- Czaja, S.J.; Charness, N.; Fisk, A.D.; Hertzog, C.; Nair, S.N.; Rogers, W.A.; Sharit, J. Factors Predicting the Use of Technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (Create). Psychol. Aging 2006, 21, 333–352. [Google Scholar] [CrossRef]
- Hall, J.A.; Liu, D. Social media use, social displacement, and well-being. Curr. Opin. Psychol. 2022, 46, 101339. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, R. Exploring the effects of health information seeking on e-satisfaction in online health communities: An empirical investigation. BMC Med. Inform. Decis. Mak. 2022, 22, 1–12. [Google Scholar] [CrossRef]
- König, C.J.; de la Guardia, M.E.C. Exploring the positive side of personal internet use at work: Does it help in managing the border between work and nonwork? Comput. Hum. Behav. 2014, 30, 355–360. [Google Scholar] [CrossRef]
- Al-Habaibeh, A.; Watkins, M.; Waried, K.; Javareshk, M.B. Challenges and opportunities of remotely working from home during COVID-19 pandemic. Glob. Transit. 2021, 3, 99–108. [Google Scholar] [CrossRef]
- Rolandsson, B.; Alasoini, T.; Berglund, T.; Dølvik, J.E.; Hedenus, A.; Ilsøe, A.; Larsen, T.P.; Rasmussen, S.; Steen, J.R.; Hjelm, E.; et al. Digital Transformations of Traditional Work in the Nordic Countries; Nordic Council of Ministers: Copenhagen, Denmark, 2020. [Google Scholar]
- Karl, K.A.; Peluchette, J.V.; Aghakhani, N. Virtual work meetings during the Covid-19 pandemic: The good, bad, and ugly. Small Group Res. 2021, 53, 343–365. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yao, Z.; Xiong, Z. The impact of work-related use of information and communication technologies after hours on time theft. J. Bus. Ethic 2022, 187, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Yamashita, N.; Kuzuoka, H.; Wang, H.C.; Foong, E. Distance Matters to Weak Ties: Exploring How Workers Perceive Their Strongly-and Weakly-Connected Collaborators in Remote Workplaces. Proc. ACM Hum. -Comput. Interact. 2022, 6, 1–26. [Google Scholar] [CrossRef]
- van der Lippe, T.; Lippényi, Z. Beyond formal access: Organizational context, working from home, and work–family conflict of men and women in European workplaces. Soc. Indic. Res. 2020, 151, 383–402. [Google Scholar] [CrossRef]
- Marsh, E.; Vallejos, E.P.; Spence, A. The digital workplace and its dark side: An integrative review. Comput. Hum. Behav. 2021, 128, 107118. [Google Scholar] [CrossRef]
- Rauchfleisch, A.; Kovic, M. The Internet and Generalized Functions of the Public Sphere: Transformative Potentials From a Comparative Perspective. Soc. Media + Soc. 2016, 2, 1–15. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in Social Media Research: Past, Present and Future. Inf. Syst. Front. 2017, 20, 531–558. [Google Scholar] [CrossRef]
- Billon, M.; Crespo, J.; Lera-Lopez, F. Do educational inequalities affect Internet use? An analysis for developed and developing countries. Telemat. Inform. 2020, 58, 101521. [Google Scholar] [CrossRef]
- Ibarra, F.; Baez, M.; Cernuzzi, L.; Casati, F. A systematic review on technology-supported interventions to improve old-age social wellbeing: Loneliness, social isolation, and connectedness. J. Heal. Eng. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Steenkamp, J.-B.E.M.; Baumgartner, H. Assessing measurement invariance in cross-national consumer research. J. Consum. Res. 1998, 25, 78–90. [Google Scholar] [CrossRef]
- Vandenberg, R.J.; Lance, C.E. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 2000, 3, 4–70. [Google Scholar] [CrossRef]
- Frid, M.G.; McKeon, B.A.; Thurman, J.M.; Maron, B.A.; Li, M.; Zhang, H.; Kumar, S.; Sullivan, T.; Laskowsky, J.; Stenmark, K.R.; et al. Immunoglobu-lin-driven complement activation regulates proinflammatory remodeling in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 224–239. [Google Scholar] [CrossRef]
- Pordelan, N.; Hosseinian, S.; Heydari, H.; Khalijian, S.; Khorrami, M. Consequences of teleworking using the internet among married working women: Educational careers investigation. Educ. Inf. Technol. 2021, 27, 4277–4299. [Google Scholar] [CrossRef] [PubMed]
- McDool, E.; Powell, P.; Roberts, J.; Taylor, K. The internet and children’s psychological wellbeing. J. Heal. Econ. 2019, 69, 102274. [Google Scholar] [CrossRef] [PubMed]
- Cook, F. Nowadays, Living without the Internet is Simply Unthinkable! Foundation for the Development of National Means of Scientific Calculation. 2021. Available online: https://fccn.pt/en/blog/30-anos-internet-portugal-fernando-cozinheiro/ (accessed on 31 January 2024).
- Goretzko, D.; Siemund, K.; Sterner, P. Evaluating model fit of measurement models in confirmatory factor analysis. Educ. Psychol. Meas. 2024, 84, 123–144. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Austin, J.T. Applications of structural equation modeling in psychological research. Annu. Rev. Psychol. 2000, 51, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Çikrıkci, Ö. The effect of internet use on well-being: Meta-analysis. Comput. Hum. Behav. 2016, 65, 560–566. [Google Scholar] [CrossRef]
- Heo, J.; Chun, S.; Lee, S.; Lee, K.H.; Kim, J. Internet use and well-being in older adults. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 268–272. [Google Scholar] [CrossRef] [PubMed]
Country | N | % | Domicile | N | % | Gender | N | % |
---|---|---|---|---|---|---|---|---|
BG Bulgaria | 660 | 7.6 | A big city | 2360 | 27.1 | Male | 4300 | 49.4 |
CH Switzerland | 618 | 7.1 | Suburbs or outskirts of big city | 959 | 11.0 | Female | 4406 | 50.6 |
CZ Czechia | 529 | 6.1 | ||||||
EE Estonia | 542 | 6.2 | Town or small city | 2573 | 29.6 | Marital status | N | % |
FI Finland | 533 | 6.1 | Country village | 2469 | 28.4 | Single | 3650 | 41.9 |
FR France | 382 | 4.4 | Farm or home in countryside | 345 | 4.0 | Married/living together | 4174 | 47.9 |
GR Greece | 597 | 6.9 | ||||||
HR Croatia | 385 | 4.4 | Total | 8706 | 100.0 | Divorced, separated, widower | 882 | 10.1 |
HU Hungary | 404 | 4.6 | ||||||
IS Iceland | 360 | 4.1 | Age | Years of education | ||||
IT Italy | 559 | 6.4 | M = 40.21; SD = 11.20; (Min = 15; Max = 90) | M = 14.77; SD = 3.67; (Min = 0; Max = 55) | ||||
LT Lithuania | 326 | 3.7 | ||||||
ME Montenegro | 190 | 2.2 | ||||||
MK North Macedonia | 254 | 2.9 | ||||||
NL Netherlands | 662 | 7.6 | ||||||
NO Norway | 691 | 7.9 | ||||||
PT Portugal | 404 | 4.6 | ||||||
SI Slovenia | 392 | 4.5 | ||||||
SK Slovakia | 218 | 2.5 | ||||||
Total | 8706 | 100.0 |
Country | M | SD | Domicile | M | SD | Gender | M | SD |
---|---|---|---|---|---|---|---|---|
BG Bulgaria | 239.20 | 179.26 | A big city | 298.40 | 206.95 | Male | 276.69 | 204.53 |
CH Switzerland | 278.28 | 206.04 | Suburbs or outskirts of big city | 317.11 | 208.99 | Female | 271.30 | 193.83 |
CZ Czechia | 239.41 | 184.27 | t(8651, 362) = 1.261; p = 0.207; d = 0.03 | |||||
EE Estonia | 321.91 | 208.18 | Town or small city | 271.41 | 195.43 | Marital status | M | SD |
FI Finland | 300.62 | 203.85 | Country village | 241.31 | 188.06 | Single | 302.84 | 202.44 |
FR France | 262.66 | 207.74 | Farm or home in countryside | 239.59 | 176.62 | Married/living together | 252.80 | 194.25 |
GR Greece | 203.27 | 141.44 | ||||||
HR Croatia HU Hungary | 269.50 186.30 | 206.90 144.18 | Total | 273.96 | 199.19 | Divorced, separated, widower | 254.63 | 193.93 |
IS Iceland | 339.31 | 197.17 | F(df 4, 8701) = 40.10; p < 0.001; η = 0.14 | F(df 2, 8703) = 67.09; p < 0.001; η = 0.12 | ||||
IT Italy | 194.26 | 144.09 | ||||||
LT Lithuania | 295.49 | 176.06 | ||||||
ME Montenegro | 267.69 | 175.40 | Age | Years of education | ||||
MK North Macedonia | 272.96 | 218.62 | r = −0.154; p < 0.001 | r = 0.207; p < 0.001 | ||||
NL Netherlands | 373.25 | 212.34 | ||||||
NO Norway | 339.38 | 209.13 | ||||||
PT Portugal | 310.41 | 232.40 | ||||||
SI Slovenia | 248.02 | 204.32 | ||||||
SK Slovakia | 191.28 | 127.50 | ||||||
Total | 273.96 | 199.19 | ||||||
F(df 18, 8687) = 39.67; p < 0.001; η = 0.28 |
Every Day | Every Day | Every Day | ||||||
---|---|---|---|---|---|---|---|---|
Country | N | % | Domicile | N | % | Gender | N | % |
BG Bulgaria | 599 | 90.8 | A big city | 2176 | 92.2 | Male | 3932 | 91.4 |
CH Switzerland | 587 | 95.0 | Suburbs or outskirts of big city | 897 | 93.5 | Female | 4057 | 92.1 |
CZ Czechia | 456 | 86.2 | χ2(1) = 1.17; p = 0.28; φ = 0.01 | |||||
EE Estonia | 510 | 94.1 | Town or small city | 2368 | 92.0 | Marital status | N | % |
FI Finland | 526 | 98.7 | Country village | 2229 | 90.3 | Single | 3424 | 93.8 |
FR France | 357 | 93.5 | Farm or home in countryside | 319 | 92.5 | Married/living together | 3761 | 90.1 |
GR Greece | 530 | 88.8 | ||||||
HR Croatia | 360 | 93.5 | Total | 7989 | 91.8 | Divorced, separated, widower | 804 | 91.2 |
HU Hungary | 315 | 78.0 | ||||||
IS Iceland | 344 | 95.6 | χ2(4) = 12.25; p = 0.016; φ = 0.04 | χ2(2) = 35.81; p < 0.001; φ = 0.06 | ||||
IT Italy | 472 | 84.4 | Age | Years of education | ||||
LT Lithuania | 292 | 89.6 | F(df1) = 77.82; p < 0.001; η = 0.09 | F(df1) = 61.87; p < 0.001; η = 0.08 | ||||
ME Montenegro | 164 | 86.3 | ||||||
MK North Macedonia | 242 | 95.3 | Most days M = 43.73; SD = 11.24 | Most days M = 13.74; SD = 3.62 | ||||
NL Netherlands | 648 | 97.9 | Every day M = 39.89; SD = 11.14 | Every day M = 14.86; SD = 3.66 | ||||
NO Norway | 660 | 95.5 | ||||||
PT Portugal | 389 | 96.3 | ||||||
SI Slovenia | 369 | 94.1 | ||||||
SK Slovakia | 169 | 77.5 | ||||||
Total | 7989 | 91.8 | ||||||
χ2(18) = 358.75; p < 0.001; φ = 0.20 |
Tolerance | Model 1 | Model 2 | Model 3 | Model 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIF | B | SE | β | B | SE | β | B | SE | β | B | SE | β | ||
Domicile | 1.04 | 0.96 | −12.62 | 1.67 | −0.08 | −13.37 | 1.66 | −0.08 | −12.79 | 1.64 | −0.08 | −10.46 | 1.56 | −0.07 |
Age | 1.34 | 0.75 | −2.42 | 0.21 | −0.14 | −2.36 | 0.21 | −0.13 | −2.36 | 0.21 | −0.13 | −2.60 | 0.20 | −0.15 |
Years of education | 1.20 | 0.84 | 11.11 | 0.57 | 0.21 | 10.19 | 0.57 | 0.19 | 8.66 | 0.57 | 0.16 | 3.39 | 0.57 | 0.06 |
Legal marital status | 1.27 | 0.79 | 4.85 | 0.97 | 0.06 | 4.34 | 0.97 | 0.05 | 3.69 | 0.96 | 0.04 | 4.37 | 0.91 | 0.05 |
How many people intimate | 1.10 | 0.91 | 17.52 | 1.53 | 0.12 | 14.46 | 1.53 | 0.10 | 5.74 | 1.47 | 0.04 | |||
Subjective general health | 1.06 | 0.94 | −10.46 | 2.86 | −0.04 | −10.56 | 2.83 | −0.04 | −7.43 | 2.69 | −0.03 | |||
Access internet: Home | 1.07 | 0.94 | −35.33 | 13.08 | −0.03 | −26.36 | 12.39 | −0.02 | ||||||
Access internet: Workplace | 1.33 | 0.76 | 71.44 | 6.49 | 0.13 | 45.04 | 6.21 | 0.08 | ||||||
Access internet: On the move | 1.24 | 0.81 | 30.01 | 5.64 | 0.06 | 20.94 | 5.36 | 0.04 | ||||||
Online/mobile communication easy to coordinate and manage activities | 1.08 | 0.93 | 8.76 | 1.18 | 0.07 | |||||||||
Work from home or place of choice, how often | 1.61 | 0.62 | −17.67 | 1.33 | −0.16 | |||||||||
Speak with colleagues about work and see each other on a screen | 1.46 | 0.68 | −10.50 | 1.22 | −0.10 | |||||||||
Speak with colleagues about work using a phone | 1.35 | 0.74 | 2.68 | 1.12 | 0.03 | |||||||||
Communicate with work colleagues via text, email, or messaging app | 1.72 | 0.58 | −10.52 | 1.19 | −0.11 | |||||||||
Online/mobile communication to work from home or place of choice | 1.47 | 0.68 | 3.30 | 0.62 | 0.06 | |||||||||
R2 (R2 Adj.) | 0.080 (0.079) | 0.094 (0.094) | 0.117 (0.116) | 0.211 (0.210) | ||||||||||
F for change in R2 | 187.95 ** | 71.31 ** | 74.15 ** | 173.31 ** |
Predictor | Moderator | Dependent | F(3, 8702) | p | β | 95% CI | t | p | Variance % | Moderator Option | β | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Years education | Gender | Minutes/day internet | 135.39 | <0.001 | −3.22 | −5.46, −0.99 | −2.83 | 0.005 | 21.12 | Male | 12.90 | <0.001 |
Years education | Marital status | Minutes/day internet | 111.52 | <0.001 | −4.31 | −8.12, −0.49 | −2.21 | 0.027 | 24.54 | Single | 12.59 | <0.001 |
Years education | Age | Minutes/day internet | 220.71 | <0.001 | −1.10 | −0.20, −0.01 | −1.93 | 0.050 | 26.59 | Younger | 13.12 | <0.001 |
Years education | Social activities | Minutes/day internet | 133.07 | <0.001 | −1.83 | −3.14, −0.53 | −2.75 | 0.006 | 20.94 | Less | 12.75 | <0.001 |
Years education | Internet home | Minutes/day internet | 132.17 | <0.001 | 6.25 | 0.89, 11.61 | 2.28 | 0.022 | 20.88 | Yes | 11.47 | <0.001 |
Years education | Internet work | Minutes/day internet | 209.44 | <0.001 | 4.37 | 1.23, 7.52 | 2.73 | 0.006 | 25.95 | Yes | 10.12 | <0.001 |
Years education | Internet move | Minutes/day internet | 190.26 | <0.001 | 3.22 | 0.43, 6.00 | 2.27 | 0.024 | 24.81 | Yes | 11.03 | <0.001 |
Fit Indices of Models | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | χ2/df | p | CFI | IFI | GFI | TLI | RMSEA (90% CI) | PCLOSE | SRMR | |
Wellbeing (4 items) | 22.729 | 3 | 7.576 | 0.000 | 0.984 | 0.984 | 0.999 | 0.903 | 0.050 (0.034–0.069) | 0.458 | 0.015 |
Access to Internet (3 items) | 53.606 | 2 | 26.803 | 0.000 | 0.975 | 0.975 | 0.996 | 0.924 | 0.074 (0.061–0.086) | 0.051 | 0.024 |
Appreciation of Internet Use (6 items) | 79.745 | 5 | 15.949 | 0.000 | 0.992 | 0.992 | 0.996 | 0.974 | 0.054 (0.044–0.065) | 0.232 | 0.016 |
Wellbeing | χ2 | df | χ2/df | RMSEA (CI) | CFI | IFI | SRMR | Comparisons | Δ RMSEA | Δ CFI | Δ SRMR | Δ χ2/df |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Configural invariance | 26.194 | 2 | 13.097 | 0.037 (0.025–0.051) | 0.982 | 0.982 | 0.013 | NA | NA | NA | NA | NA |
Metric invariance | 30.322 | 5 | 6.064 | 0.024 (0.016–0.033) | 0.981 | 0.981 | 0.014 | Configural vs. metric | 0.013 | 0.001 | 0.001 | 7.033 |
Scalar invariance | 30.423 | 6 | 5.071 | 0.022 (0.014–0.030) | 0.982 | 0.982 | 0.014 | Metric vs. scalar | 0.002 | 0.001 | 0.000 | 0.993 |
Error variance invariance | 47.408 | 11 | 4.31 | 0.020 (0.014–0.025) | 0.973 | 0.973 | 0.015 | Scalar vs. error variance | 0.002 | 0.009 | 0.001 | 0.761 |
Access to internet | χ2 | df | χ2/df | RMSEA (CI) | CFI | IFI | SRMR | Comparisons | Δ RMSEA | Δ CFI | Δ SRMR | Δ χ2/df |
Configural invariance | 70.191 | 2 | 35.096 | 0.063 (0.051–0.076) | 0.968 | 0.968 | 0.012 | NA | NA | NA | NA | NA |
Metric invariance | 70.331 | 3 | 23.444 | 0.051 (0.041–0.061) | 0.968 | 0.968 | 0.012 | Configural vs. metric | 0.012 | 0.000 | 0.000 | 12.652 |
Scalar invariance | 105.427 | 7 | 15.061 | 0.040 (0.034–0.047) | 0.958 | 0.958 | 0.013 | Metric vs. scalar | 0.011 | 0.010 | 0.001 | 8.383 |
Error variance invariance | 105.427 | 7 | 15.061 | 0.040 (0.034–0.047) | 0.953 | 0.953 | 0.013 | Scalar vs. error variance | 0.000 | 0.005 | 0.000 | 0.000 |
Appreciation of internet use | χ2 | df | χ2/df | RMSEA (CI) | CFI | IFI | SRMR | Comparisons | Δ RMSEA | Δ CFI | Δ SRMR | Δ χ2/df |
Configural invariance | 75.407 | 6 | 12.568 | 0.036 (0.029–0.044) | 0.993 | 0.993 | 0.014 | NA | NA | NA | NA | NA |
Metric invariance | 143.54 | 10 | 14.354 | 0.039 (0.034–0.045) | 0.987 | 0.987 | 0.026 | Configural vs. metric | 0.003 | 0.006 | 0.012 | 1.786 |
Scalar invariance | 149.861 | 11 | 13.624 | 0.038 (0.033–0.044) | 0.986 | 0.986 | 0.026 | Metric vs. scalar | 0.001 | 0.001 | 0.000 | 0.730 |
Error variance invariance | 178.532 | 18 | 9.918 | 0.032 (0.028–0.036) | 0.984 | 0.984 | 0.026 | Scalar vs. error variance | 0.006 | 0.002 | 0.000 | 3.706 |
Cluster | Internet Use in Minutes | Gender | Age | Education in Years | Marital Status | Social Index | |
---|---|---|---|---|---|---|---|
1 | 1 | 532.982 | Male | 38.52 | 15.78 | Single | Higher |
2 | 2 | 160.867 | Female | 40.95 | 14.33 | Not single | Lower |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, Â.M.T.; Azevedo, Â.S.; Rodrigues, A. Influence of Sociodemographic and Social Variables on the Relationship between Formal Years of Education and Time Spent on the Internet. Societies 2024, 14, 114. https://doi.org/10.3390/soc14070114
Leite ÂMT, Azevedo ÂS, Rodrigues A. Influence of Sociodemographic and Social Variables on the Relationship between Formal Years of Education and Time Spent on the Internet. Societies. 2024; 14(7):114. https://doi.org/10.3390/soc14070114
Chicago/Turabian StyleLeite, Ângela Maria Teixeira, Ângela Sá Azevedo, and Anabela Rodrigues. 2024. "Influence of Sociodemographic and Social Variables on the Relationship between Formal Years of Education and Time Spent on the Internet" Societies 14, no. 7: 114. https://doi.org/10.3390/soc14070114
APA StyleLeite, Â. M. T., Azevedo, Â. S., & Rodrigues, A. (2024). Influence of Sociodemographic and Social Variables on the Relationship between Formal Years of Education and Time Spent on the Internet. Societies, 14(7), 114. https://doi.org/10.3390/soc14070114