An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Specimens Casting
2.2. Accelerated Corrosion Technique
2.3. Mapping of Surface Concrete Cracks
2.4. Pull-Out Tests
3. Results and Discussion
4. Conclusions
- Corrosion of the main steel bar causes surface concrete cracking, the width of which is closely related to the existence and densification of stirrups. The increased density of stirrups, on the one hand, contributes to the reduction in the range of surface cracking and on the other hand, to the reduction in the bond loss rate in corrosion conditions;
- In non-corroded conditions, the use of wide stirrups (Φ8/240 mm) enhances the bond strength, in uncorroded conditions, by about 36% in comparison with a group of specimens without stirrups. However, in corrosion conditions, an 8.5% mass loss of reinforcing bar leads to about a 60% reduction in bond strength compared to those of uncorroded specimens;
- Specimens with quite dense stirrups (Φ8/120 mm) indicated higher bond strength values in non-corroded specimens, and bond strength degrades by about 32% due to an 8.5% mass loss of the reinforcing bar;
- Dense stirrups spacing, specimens with Φ8/60 mm, ensure a high level of bond behavior, either in terms of bond strength or of residual bond stress, both in uncorroded and corroded conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Koch, G.; Varney, J.; Thompson, N.; Moghiss, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study; Jacobson, G., Ed.; NACE International: Houston, TX, USA, 2016. [Google Scholar]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. NPJ Mater. Degrad. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Angst, U.M.; Geiker, M.R.; Michel, A.; Gehlen, C.; Wong, H.; Isgor, O.B.; Elsener, B.; Hansson, C.M.; François, R.; Hornbostel, K.; et al. The steel–concrete interface. Mater. Struct. 2017, 50, 143. [Google Scholar] [CrossRef]
- Hime, W.G.; Backus, L.A.; Li, C.Q. Modeling Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures. Discussions and Closure. ACI Mater. J. 1999, 96, 675–681. [Google Scholar]
- Apostolopoulos, C.; Papadakis, V. Consequences of steel corrosion on the ductility properties of reinforcement bar. Constr. Build. Mater. 2008, 22, 2316–2324. [Google Scholar] [CrossRef]
- Elbusaefi, A.A. The Effect of Steel Bar Corrosion on the Bond. Strength of Concrete Manufactured with Cement Replacement Materials; Cardiff University: Wales, UK, 2014. [Google Scholar]
- Fu, X.; Chung, D. Effect of corrosion on the bond between concrete and steel rebar. Cem. Concr. Res. 1997, 27, 1811–1815. [Google Scholar] [CrossRef]
- Torres-Acosta, A.A.; Navarro-Gutierrez, S.; Terán-Guillén, J. Residual flexure capacity of corroded reinforced concrete beams. Eng. Struct. 2007, 29, 1145–1152. [Google Scholar] [CrossRef]
- Rodriguez, J.; Ortega, L.M.; Garda, A.M. Assessment of Structural Elements with Corroded Reinforcement. In Proceedings of the International Conference Corrosion and Corrosion Protection of Steel in Concrete, Sheffield, UK, 24–28 July 1994; pp. 172–185. [Google Scholar]
- Rodriguez, J.; Ortega, L.M.; Casal, J.; Diez, J.M. Corrosion of reinforcement and service life of concrete structure. In Proceedings of the 7th International Conference on Durability of Building Materials and Components, London, UK, 19–23 May 1996; pp. 117–126. [Google Scholar]
- Torres-Acosta, A.A.; Martnez-Madrid, M. Residual Life of Corroding Reinforced Concrete Structures in Marine Environment. J. Mater. Civ. Eng. 2003, 15, 344–353. [Google Scholar] [CrossRef]
- Vidal, T.; Castel, A.; François, R. Analyzing crack width to predict corrosion in reinforced concrete. Cem. Concr. Res. 2004, 34, 165–174. [Google Scholar] [CrossRef]
- Zhang, R.; Castel, A.; François, R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process. Cem. Concr. Res. 2010, 40, 415–425. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, J.; Hu, B.; Jin, W. Crack shape and oxide distribution in corrosion-induced cracking concrete. Corros. Sci. 2012, 55, 385–393. [Google Scholar] [CrossRef]
- Bossio, A.; Montuori, M.; Bellucci, F.; Lignola, G.; Prota, A.; Cosenza, E.; Manfredi, G. Structural modeling and monitoring of corrosion. In Proceedings of the 1st International Conference on Concrete Sustainability, Tokyo, Japan, 27–29 May 2013; pp. 551–558. [Google Scholar]
- Andrade, C.; Cesetti, A.; Mancini, G.; Tondolo, F. Estimating corrosion attack in reinforced concrete by means of crack opening. Struct. Concr. 2016, 17, 533–540. [Google Scholar] [CrossRef]
- Bossio, A.; Lignola, G.P.; Fabbrocino, F.; Monetta, T.; Prota, A.; Bellucci, F.; Manfredi, G. Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks. Struct. Concr. 2017, 18, 104–117. [Google Scholar] [CrossRef]
- ACI 408R-03. Bond. and Development of Straight Reinforcing Bars in Tension; ACI: Farmington Hills, MI, USA, 2012. [Google Scholar]
- Abosrra, L.; Ashour, A.F.; Youseffi, M. Corrosion of steel reinforcement in concrete of different compressive strengths. Constr. Build. Mater. 2011, 25, 3915–3925. [Google Scholar] [CrossRef]
- Zandi, K.; Coronelli, D. Anchorage Capacity of Corroded Reinforcement: Eccentric Pull-Out Tests on Beam-End Specimens; Report No. 2010-06; Department of Civil and Environmental Engineering, Chalmers University of Technology: Goteborg, Sweden, 2010. [Google Scholar]
- Apostolopoulos, C.A.; Koulouris, K.F.; Apostolopoulos, A.C. Correlation of Surface Cracks of Concrete due to Corrosion and Bond Strength (between Steel Bar and Concrete). Adv. Civ. Eng. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Fischer, C.; Ozbolt, J. An Appropriate Indicator for Bond Strength Degradation due to Reinforcement Corrosion. In Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS), Toledo, Spain, 11–14 March 2013; pp. 1828–1835. [Google Scholar]
- Yalciner, H.; Eren, O.; Sensoy, S. An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cem. Concr. Res. 2012, 42, 643–655. [Google Scholar] [CrossRef]
- Hanjari, K.Z.; Lundgren, K.; Coronelli, D. Bond capacity of severely corroded bars with corroded stirrups. Mag. Concr. Res. 2011, 63, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhao, Y.; Ožbolt, J.; Reinhardt, H.-W. Bond strength evaluation of corroded steel bars via the surface crack width induced by reinforcement corrosion. Eng. Struct. 2017, 152, 506–522. [Google Scholar] [CrossRef]
- BS EN. 206-1 Concrete-Part 1: Specification, Performance, Production and Conformity; British Standards Institution: London, UK, 2000. [Google Scholar]
- Jia, J.X.; Song, G.; Atrens, A. Boundary element method predictions of the influence of the electrolyte on the galvanic corrosion of AZ91D coupled to steel. Mater. Corros. 2005, 56, 259–270. [Google Scholar] [CrossRef]
- Jia, J.X.; Atrens, A.; Song, G.; Muster, T.H. Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution. Mater. Corros. 2005, 56, 468–474. [Google Scholar] [CrossRef]
- G01 Committee. Practice for Operating Salt Spray (Fog) Apparatus; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Valdez-Salas, B.; Ramirez, J.; Eliezer, A.; Schorr, M.; Ramos, R.; Salinas, R. Corrosion assessment of infrastructure assets in coastal seas. J. Mar. Eng. Technol. 2016, 15, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulos, C.; Drakakaki, A.; Basdeki, M. Seismic assessment of a reinforced concrete column under seismic loads. Int. J. Struct. Integr. 2018, 10, 41–54. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, Y.; Yang, J.-Q.; Feng, P.; Ozbolt, J.; Ye, H. Effects of the corrosion of main bar and stirrups on the bond behavior of reinforcing steel bar. Constr. Build. Mater. 2019, 225, 13–28. [Google Scholar] [CrossRef]
- ASTM C234-91a. Standard Test. Method for Comparing Concretes on the Basis of the Bond Developed with Reinforcing Steel (Withdrawn 2000); ASTM International: West Conshohocken, PA, USA, 1991. [Google Scholar]
- Mak, M.W.T.; Desnerck, P.; Lees, J.M. Corrosion-induced cracking and bond strength in reinforced concrete. Constr. Build. Mater. 2019, 208, 228–241. [Google Scholar] [CrossRef]
- Holly, I.; Bilčík, J. Modelling of Reinforcement Corrosion in Concrete. In Proceedings of the 22nd International Conference Engineering Mechanics, Svratka, Czech Republic, 9–12 May 2016. [Google Scholar]
- Holly, I.; Bilčík, J. Effect of reinforcement corrosion on bond behavior. Procedia Eng. 2013, 65, 248–253. [Google Scholar]
- Koteš, P.; Viˇcan, J. Influence of Reinforcement Corrosion on Moment and Shear Resistance in Time of RC Bridge Girder. In Proceedings of the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), Foz do Iguaçu, Brazil, 26–30 June 2016; pp. 1923–1928. [Google Scholar]
- Brodňan, M.; Koteš, P.; Vanerek, J.; Drochytka, R. Corrosion determination of reinforcement using the electrical resistance method. Mater. Technol. 2017, 51, 85–93. [Google Scholar] [CrossRef]
Specimen | Mass Loss (%) | Average Crack Width (mm) | Maximum Load (kN) | Bond Stress (MPa) | Bond Loss Ratio (MPa) | Slip at Bond Strength (mm) |
---|---|---|---|---|---|---|
25-N-0 | 0 | 0 | 65.1 | 5.18 | 1 | 1.76 |
25-N-1 | 0.97 | 0.20 | 57.3 | 4.56 | 0.88 | 2.14 |
25-N-2 | 2.05 | 0.35 | 40.4 | 3.21 | 0.62 | 2.84 |
25-N-3 | 4.12 | 0.55 | 26.7 | 2.12 | 0.41 | 3.55 |
25-N-4 | 5.83 | 0.95 | 12.4 | 0.98 | 0.19 | 4.57 |
25-N-5 | 7.73 | 1.45 | 9.8 | 0.78 | 0.15 | 0.78 |
25-S240-0 | 0 | 0 | 88.5 | 7.04 | 1 | 1.44 |
25-S240-1 | 1.03 | 0.35 | 68.1 | 5.42 | 0.77 | 1.69 |
25-S240-2 | 2.22 | 0.55 | 53.1 | 4.22 | 0.60 | 2.12 |
25-S240-3 | 4.38 | 0.85 | 45.1 | 3.59 | 0.51 | 1.84 |
25-S240-4 | 5.74 | 1.05 | 42.5 | 3.38 | 0.48 | 2.40 |
25-S240-5 | 8.47 | 1.45 | 35.4 | 2.82 | 0.40 | 1.93 |
25-S120-0 | 0 | 0 | 114.4 | 9.10 | 1 | 1.27 |
25-S120-1 | 1.17 | 0.35 | 108.6 | 8.65 | 0.95 | 2.07 |
25-S10-2 | 3.22 | 0.70 | 93.8 | 7.46 | 0.82 | 1.48 |
25-S120-3 | 5.84 | 1.20 | 81.2 | 6.46 | 0.71 | 1.29 |
25-S120-4 | 7.06 | 1.10 | 57.2 | 4.55 | 0.50 | 1.96 |
25-S120-5 | 8.32 | 1.40 | 77.8 | 6.19 | 0.68 | 2.05 |
25-S60-0 | 0 | 0 | 119.8 | 9.53 | 1 | 1.83 |
25-S60-1 | 0.85 | 0.20 | 131.7 | 10.48 | 1.10 | 1.46 |
25-S60-2 | 1.72 | 0.55 | 122.2 | 9.72 | 1.02 | 2.37 |
25-S60-3 | 2.96 | 0.65 | 110.2 | 8.77 | 0.92 | 2.13 |
25-S60-4 | 5.82 | 0.90 | 107.8 | 8.58 | 0.90 | 2.36 |
25-S60-5 | 8.68 | 1.00 | 98.2 | 7.81 | 0.82 | 3.50 |
No Stirrups | Φ8/240 | Φ8/120 | Φ8/60 | |
---|---|---|---|---|
A | 1.435 | 0.736 | 0.274 | 0.117 |
R2 (%) | 96.2 | 96.5 | 97.7 | 45.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulouris, K.; Apostolopoulos, C. An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete. Metals 2020, 10, 1327. https://doi.org/10.3390/met10101327
Koulouris K, Apostolopoulos C. An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete. Metals. 2020; 10(10):1327. https://doi.org/10.3390/met10101327
Chicago/Turabian StyleKoulouris, Konstantinos, and Charis Apostolopoulos. 2020. "An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete" Metals 10, no. 10: 1327. https://doi.org/10.3390/met10101327
APA StyleKoulouris, K., & Apostolopoulos, C. (2020). An Experimental Study on Effects of Corrosion and Stirrups Spacing on Bond Behavior of Reinforced Concrete. Metals, 10(10), 1327. https://doi.org/10.3390/met10101327