Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussion
3.1. Microstructure Transformation Curves of New Cold-Rolled Automotive Steels
3.2. Microstructure of Cold-Rolled Sheet and Aged Samples
3.3. Effect of Aging Temperature on Mechanical Properties of Auto Panels
3.3.1. Effect of Aging Temperature on Tensile Properties
3.3.2. Effect of Austenitizing and Aging Temperature on Microhardness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, C.Y.; Yang, J.; Chang, Y.; Cao, W.Q.; Dong, H. Development trend and challenge of advanced high strength automobile steels. Iron Steel 2019, 54, 1–6. [Google Scholar]
- Zhu, G.H.; Ding, H.L.; Wang, X.N.; Wang, Y.Q.; Chen, Q.W. Research and Development of the Third Generation Steels forAutomobile with Ultra-High Strength and Product of Strength and Elongation Based on Strength and Plasticity Enhancement by Multi-Dimensions Mechanisms. Mater. China 2018, 37, 826–836. [Google Scholar]
- Sato, M.; Utsumi, Y.; Watanabe, K. Ultra-high-strength, quench-type, hot-rolled steel sheets of 1620 MPa grade for automobile door impact beams. Kobelco Technol. Rev. 2008, 28, 13–17. [Google Scholar]
- Zrnik, J.; Mamuzic, I.; Dobatkin, S.V. Recent Progress in High Strength Low Carbon Steels. Metalurgija 2006, 45, 323–331. [Google Scholar]
- Sh, F.C. Development of third-generation automotive steel. Shanxi Metall. 2015, 1, 1–3. [Google Scholar]
- Hisashi, H.; Takeo, N. Recent trends in sheet metals and their formability in manufacturing automotive panels. J. Mater. Process Technol. 1994, 46, 455–487. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, K.Y.; Kim, G.S.; Chin, K.G. New Trends in Advanced High Strength Steel Developments for Automotive Application. Mater. Sci. Forum 2010, 19, 136–141. [Google Scholar] [CrossRef]
- Sugimoto, K.; Iida, T.; Sakaguchi, J.; Kashima, T. Retained Austenite Characteristics and Tensile Properties in a TRIP Type Bainitic Sheet Steel. ISIJ Int. 2000, 40, 902–908. [Google Scholar] [CrossRef]
- Kang, Y.L.; Zhu, G.M. Develpoment trend of China’s Automobile Industry and the Opportunities and Challenges of Steels for Automobiles. Iron Steel 2014, 12, 1–7. [Google Scholar]
- Shi, J.; Sun, X.J.; Mao, Q.W.; Hui, W.J.; Dong, H.; Cao, W.Q. Enhanced work- hardening behavior and mechanical properties inultrafine-grained steels with large- fractioned metastable austenite. Scr. Mater. 2010, 63, 815–818. [Google Scholar] [CrossRef]
- Sun, C.Y.; Bai, Q.; Lin, J.G.; Takeki, M.; Trevor, A.D. The effect of process and model parameters in temperature prediction for hot stamping of boron steel. Adv. Mech. Eng. 2016, 5, 829379. [Google Scholar] [CrossRef]
- Dong, H.; Cao, W.Q.; Shi, J.; Wang, C.Y.; Wang, M.Q.; Weng, Y.Q. Microstructure and Performance Control Technology of the 3rd Generation Auto Sheet Steels. Iron Steel 2011, 46, 1–11. [Google Scholar]
- Li, L.; He, Y.L.; Zhang, M.; Fu, R.Y.; Shi, W. Research and Development of Advanced Automobile Sheet Steel. J. Shanghai Univ. 2011, 17, 480–486. [Google Scholar]
- Olivier, B.; Hatem, Z.; Huang, M.X. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 2013, 84, 937–947. [Google Scholar]
- Ahmad, M.; Ala, Q.; Mohammed, O.; Dongri, S. Design for sustainability in automotive industry: A comprehensive review. Renew. Sustain. Energy Rev. 2012, 16, 1845–1862. [Google Scholar]
- Zhang, M.; Wang, T.S.; Wang, Y.H.; Yang, J.; Zhang, F.C. Preparation of nanostructured bainite in medium-carbon alloysteel. Mat. Sci. Eng. A 2013, 568, 123–126. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, K.M.; Hu, F.; Yu, L.; Wan, X.L. Multi-step isothermal bainitic transformation in medium-carbon steel. Scr. Mater. 2014, 74, 56–59. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, X.P.; Zhang, R.H.; Tian, Y.Q.; Cheng, L.S. Medium Manganese High Strength Steel for Automotive Application: Status Quo and Prospects. Mater. Rev. 2019, 33, 1215–1220. [Google Scholar]
- Liu, T.; Zhu, Z.Q. Research status of medium manganese steel for the 3rd gernation automobile sheet. Ordnance Mater. Sci. Eng. 2019, 42, 102–108. [Google Scholar]
- Speer, J.; Matlock, D.K.; De Coomanb, B.C.; Schroth, J.G. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003, 51, 2611–2622. [Google Scholar] [CrossRef]
- Zhu, G.H.; Zhou, H.B.; Li, Q.Y.; Chen, Q.W.; Gu, H.R.; Liu, Y.G. Newly Designed Cr-Mn Alloyed Ultra-high Strength Steel without Boron Addition for Hot-stamping Processing. J. Iron Steel. Res. Int. 2015, 22, 1144–1148. [Google Scholar] [CrossRef]
- Zhou, H.B.; Zhu, G.H.; Li, Y.Q.; Chen, Q.W. Microstructure and Properties of a New Cr-Mn Steel without Boron Additions for Use in Hot Stamping. Met. Sci. Heat Treat. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Mou, X.T.; Chen, Q.W.; Pan, H.B.; Huang, F. Continuous cooling transformation of micro alloyed Mn-Cr hot stamping steels. Trans. Mater. Heat Treat. 2020, 41, 111–118. [Google Scholar]
- Gu, Y.; Qiao, G.Y.; Wu, D.Y.; Liao, B.; Xiao, F.R. Precipitation kinetics of Nb carbonitride in austenite and acicular ferrite and its effect on hardness of high-Nb steel. Mater. Chem. Phys. 2016, 183, 506–515. [Google Scholar] [CrossRef]
- Bhaskar, D.; Sellers, C.M. Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite. Mater. Sci. Technol. 2013, 3, 197–206. [Google Scholar]
- Yong, Q.L. The Second Phase in Steel; Metallurgical Industry Press: Beijing, China, 2006; pp. 361–363. [Google Scholar]
- Li, H.M.; Cao, J.C.; Sun, L.J.; Zhou, X.L.; He, H.; .Mi, Y.F. Current Situation and Development of Nb Microalloyed Steel Carbonitride Precipitation Behavior. Mater. Rev. 2010, 24, 84–87. [Google Scholar]
- Qiang, W.J.; Wu, C.J. Metallurgy; Metallurgical Industry Press: Beijing, China, 2016; pp. 9–10. [Google Scholar]
Composition | C | Mn | Cr | Nb | Si | Ti | S | P | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
20Mn2Cr | 0.21 | 1.69 | 1.30 | 0.009 | 0.04 | 0.002 | 0.005 | 0.007 | 0.0098 | balance |
20Mn2CrNb | 0.21 | 1.66 | 1.21 | 0.034 | 0.05 | 0.010 | 0.003 | 0.007 | 0.0120 | balance |
Specimen | Rp0.2/MPa | Rm/MPa | A/% | Rm × A/GPa% |
---|---|---|---|---|
20Mn2Cr | 920 | 971 | 19.6 | 19.01 |
20Mn2CrNb | 882 | 907 | 18.1 | 16.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Chen, J.; Ge, Z.; Li, J.; Wang, Y. Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels. Metals 2020, 10, 1414. https://doi.org/10.3390/met10111414
Huang F, Chen J, Ge Z, Li J, Wang Y. Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels. Metals. 2020; 10(11):1414. https://doi.org/10.3390/met10111414
Chicago/Turabian StyleHuang, Fei, Jian Chen, Zhangqi Ge, Junliang Li, and Yongqiang Wang. 2020. "Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels" Metals 10, no. 11: 1414. https://doi.org/10.3390/met10111414
APA StyleHuang, F., Chen, J., Ge, Z., Li, J., & Wang, Y. (2020). Effect of Heat Treatment on Microstructure and Mechanical Properties of New Cold-Rolled Automotive Steels. Metals, 10(11), 1414. https://doi.org/10.3390/met10111414