Selenate Adsorption from Water Using the Hydrous Iron Oxide-Impregnated Hybrid Polymer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of pH
3.2. X-ray Diffraction (XRD) Analysis
3.3. Process Kinetics
3.4. Effect of the Initial Se(VI) Concentration—Adsorption Isotherms
3.5. Fourier Transform Infrared (FTIR) Spectra of Adsorbent
3.6. Regeneration Studies
3.7. Separation of Selenate from Spiked Drinking Water Samples
4. Discussion
5. Comparative Evaluation of Different Adsorbents for Se(VI) Removal
6. Conclusions
- the investigated process was pH dependent, with the best performances at pH 4;
- a pseudo-first model was the most appropriate for the kinetic data description;
- experimentally determined maximum adsorption capacity of the investigated adsorbent towards Se(VI) was found to be 22.5 mg/g, while the value calculated using the Langmuir model was 28.8 mg/g, depicting its prominent adsorption potential.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khamkhash, A.; Srivastava, V.; Ghosh, T.; Akdogan, G.; Ganguli, R.; Aggarwal, S. Mining-Related Selenium Contamination in Alaska, and the State of Current Knowledge. Minerals 2017, 7, 46. [Google Scholar] [CrossRef]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium Contamination, Consequences and Remediation Techniques in Water and Soils: A Review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Noreen, S.; Mustafa, G.; Ibrahim, S.M.; Naz, S.; Iqbal, M.; Yaseen, M.; Javed, T.; Nisar, J. Iron Oxide (Fe2O3) Prepared via Green Route and Adsorption Efficiency Evaluation for an Anionic Dye: Kinetics, Isotherms and Thermodynamics Studies. J. Mater. Res. Technol. 2020. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and Selenoproteins: It’s Role in Regulation of Inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef] [PubMed]
- Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic Selenium Compounds as Potential Chemotherapeutic Agents for Improved Cancer Treatment. Free Radic. Biol. Med. 2018, 127, 80–97. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; WHO: Geneva, Switzerland, 2012; ISBN 9789241549950. [Google Scholar]
- EU. Commission Directive (EU) 2015/1787 of 6 October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Off. J. Eur. Union 2015, L260, 6–18. [Google Scholar]
- EPA. National Primary Drinking Water Regulations Contaminant MCL or Potential Health Effects from Common Sources of Contaminant Public Health TT 1 (mg/L) 2 Long-Term 3 Exposure above the MCL in Drinking Water Goal (mg/L) 2. 2009. Available online: https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf (accessed on 22 September 2020).
- Veneu, D.M.; Yokoyama, L.; Cunha, O.G.C.; Schneider, C.L.; Monte, M.B.D.M. Nickel Sorption Using Bioclastic Granules as a Sorbent Material: Equilibrium, Kinetic and Characterization Studies. J. Mater. Res. Technol. 2019, 8, 840–852. [Google Scholar] [CrossRef]
- Peak, D.; Sparks, D.L. Mechanisms of Selenate Adsorption on Iron Oxides and Hydroxides. Environ. Sci. Technol. 2002, 36, 1460–1466. [Google Scholar] [CrossRef]
- Taleb, K.; Markovski, J.; Milosavljević, M.; Marinović-Cincović, M.; Rusmirović, J.; Ristić, M.; Marinković, A. Efficient Arsenic Removal by Cross-Linked Macroporous Polymer Impregnated with Hydrous Iron Oxide: Material Performance. Chem. Eng. J. 2015, 279, 66–78. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Wijnja, H.; Schulthess, C.P. Vibrational Spectroscopy Study of Selenate and Sulfate Adsorption Mechanisms on Fe and Al (Hydr)oxide surfaces. J. Colloid Interface Sci. 2000, 229, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; de Pablo, J.; Martí, V.; Duro, L. Sorption of Selenium(IV) and Selenium(VI) onto Natural Iron Oxides: Goethite and Hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.M.; Hernandez, J.; Peralta-Videa, J.R.; Botez, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L. Sorption Kinetic Study of Selenite and Selenate onto a High and Low Pressure Aged Iron Oxide Nanomaterial. J. Hazard. Mater. 2012, 211–212, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumbal, L.; Sengupta, A.K. Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles: Role of Donnan Membrane Effect. Environ. Sci. Technol. 2005, 39, 6508–6515. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorieder Sogennanten Adsorption Geloester Stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.; Morris, C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Capillary and Colloid Chemistry; Methuen and Co. Ltd.: London, UK, 1926. [Google Scholar]
- Alguacil, F.J.; García-Díaz, I.; Baquero, E.E.; Largo, O.R.; López, F.A. Oxidized and Non-Oxidized Multiwalled Carbon Nanotubes as Materials for Adsorption of Lanthanum (III) Aqueous Solutions. Metals 2020, 10, 765. [Google Scholar] [CrossRef]
- Chan, Y.T.; Liu, Y.T.; Tzou, Y.M.; Kuan, W.H.; Chang, R.R.; Wang, M.K. Kinetics and Equilibrium Adsorption Study of Selenium Oxyanions onto Al/Si and Fe/Si Coprecipitates. Chemosphere 2018, 198, 59–67. [Google Scholar] [CrossRef]
- Payne, T.E.; Brendler, V.; Ochs, M.; Baeyens, B.; Brown, P.L.; Davis, J.A.; Ekberg, C.; Kulik, D.A.; Lutzenkirchen, J.; Missana, T.; et al. Guidelines for Thermodynamic Sorption Modelling in the Context of Radioactive Waste Disposal. Environ. Model. Softw. 2013, 42, 143–156. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Hernandez, J.; Parsons, J.G.; Gardea-Torresdey, J.L. A Study of the Removal of Selenite and Selenate from Aqueous Solutions Using a Magnetic Iron/Manganese Oxide Nanomaterial and ICP-MS. Microchem. J. 2010, 96, 324–329. [Google Scholar] [CrossRef]
- Zelmanov, G.; Semiat, R. Selenium Removal from Water and its Recovery Using Iron (Fe3+) Oxide/Hydroxide-Based Nanoparticles Sol (NanoFe) as an Adsorbent. Sep. Purif. Technol. 2013, 103, 167–172. [Google Scholar] [CrossRef]
- Amrani, M.A.; Ghaleb, A.M.; Ragab, A.E.; Ramadan, M.Z.; Khalaf, T.M. Low-cost Goethite Nanorods for as (III) and Se(VI) Removal from Water. Appl. Sci. 2020, 10, 7237. [Google Scholar] [CrossRef]
Variable Code | Variable | Levels | ||
---|---|---|---|---|
Low | Medium | High | ||
A | Initial pH | 7 | - | 11 |
B | Concentration (mol L−1) | 0 | - | 0.5 |
C | Volume (mL) | 5 | 15 | 25 |
Run | A | B | C | Initial pH | C (NaCl) mol L−1 | V (mL) | Final pH |
---|---|---|---|---|---|---|---|
1 | 2 | 2 | 3 | 11 | 0.5 | 25 | 10.9 |
2 | 1 | 2 | 1 | 7 | 0.5 | 5 | 7.0 |
3 | 2 | 2 | 1 | 11 | 0.5 | 5 | 10.8 |
4 | 2 | 1 | 3 | 11 | 0 | 25 | 11.1 |
5 | 2 | 1 | 1 | 11 | 0 | 5 | 10.5 |
6 | 2 | 2 | 2 | 11 | 0.5 | 15 | 10.7 |
7 | 1 | 1 | 1 | 7 | 0 | 5 | 6.2 |
8 | 1 | 1 | 3 | 7 | 0 | 25 | 6.6 |
9 | 1 | 1 | 2 | 7 | 0 | 15 | 6.6 |
10 | 1 | 2 | 2 | 7 | 0.5 | 15 | 6.8 |
11 | 2 | 1 | 2 | 11 | 0 | 15 | 10.9 |
12 | 1 | 2 | 3 | 7 | 0.5 | 25 | 6.9 |
Ca | Mg | K | Fe | Pb | Cu | Zn | Ni | Mn |
---|---|---|---|---|---|---|---|---|
49.1 ± 4.5 | 8.8 ± 0.8 | 4.8 ± 0.5 | <0.01 | <0.02 | 0.15 ± 0.03 | <0.05 | <0.01 | <0.01 |
Selenate Solution in | pH | Se initial Concentration (mg L−1) | Removal Efficiency (%) |
---|---|---|---|
Synthetic water | 4 | 1 | 91 |
2 | 77.5 | ||
5 | 71 | ||
Drinking water | 4 | 1 | 25 |
2 | 17.5 | ||
5 | 13 | ||
Drinking water | 7 | 1 | 14 |
2 | 8 | ||
5 | 6.5 |
Model | Parameters | |||||
---|---|---|---|---|---|---|
Pseudo-second order model | qe | h | k2 | R2 | F | p |
13.99 mg g−1 | 3.54 × 10−2 mg (g min)−1 | 2.53 × 10−3 g (mg min)−1 | 0.651 | 7.52 | 0.052 | |
Pseudo-first order model | qe | k1 | 0.986 | 363 | 7.3 × 10−6 | |
7.24 mg g−1 | 9.16×10−3 min−1 | |||||
Intraparticle diffusion model | kd | 0.952 | 100 | 1.7 × 10−4 | ||
0.374 mg g−1 min−1/2 |
Model | Model Parameter | Value |
---|---|---|
Langmuir | KL | 2.981 L mg−1 |
qm | 28.8 mg g−1 | |
F | 6.69 | |
p | 0.081 | |
R2 | 0.78 | |
Freundlich | n | 1.246 |
KF | 30.377 mg1−nL3ng−1 | |
F | 5.62 | |
p | 0.14 | |
R2 | 0.736 |
Variable | System Response | |||
---|---|---|---|---|
Desorption (%) | Final pH | |||
F | p | F | p | |
A | 1574 | 0.001 | 20195 | <0.001 |
B | 634.4 | 0.002 | 48.48 | 0.02 |
C | 16.89 | 0.056 | 21.20 | 0.045 |
AB | 944.0 | <0.001 | 63.84 | 0.015 |
AC | 0.19 | 0.839 | 2.84 | 0.260 |
BC | 6.68 | 0.13 | 43.00 | 0.030 |
- | s = 1.691 R2 = 99.94% R2 (adj) = 99.66% | s = 0.0505 R2 = 99.99% R2 (adj) = 99.95% |
Adsorbent | Experimental Conditions | Maximum Sorption Capacity (mg g−1) | Reference | |||||
---|---|---|---|---|---|---|---|---|
pH | Se(VI) Concentration Range | Adsorbent Dosage | Volume (ml) | Contact Time (min) | Temperature | |||
Natural hematite from Cerro del Hierro (Spain) | 4 | 3 × 10−6 and 5 × 10−4 mol dm−3 | 100 mg | 20 | - | room | 0.18 | [14] |
Natural goethite from Cerro del Hierro (Spain) | 4 | 3 × 10−6 and 5 × 10−4 mol dm−3 | 100 mg | 20 | - | room | 0.24 | [14] |
Synthetic Jacobsite (MnFe2O4) NM | 4 | 0.25–10 mg L−1 | 10 mg | 4 | 15 | room | 0.76 | [25] |
Fe3O4 nanomaterials produced by non microwave-assisted synthetic techniques | 4 | 0.25–10 mg L−1 | 10 mg | 4 | 15 | room | 1.43 | [15] |
Fe3O4 nanomaterials produced by non microwave-assisted synthetic techniques | 4 | 0.25–10 mg L−1 | 10 mg | 4 | 15 | room | 2.37 | [15] |
Iron (Fe3+) oxide/hydroxide nanoparticles sol (NanoFe) | 4 | 12 ppm | 15–635 mg L−1 | - | 1 | room | 15.1 | [26] |
Low-Cost Goethite Nanorods | 7.2 | ~0.500 mg L−1 | 0.05–1 g L−1 | 100 | 360 | room | 4.75 | [27] |
Iron oxide impregnated hybrid polymer | 4 | 0.1–5 mg L−1 | 0.16 g L−1 | 25 | 300 | room | 28.8 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanovic, V.; Peric-Grujic, A.; Ristic, M.; Marinkovic, A.; Markovic, R.; Onjia, A.; Sljivic-Ivanovic, M. Selenate Adsorption from Water Using the Hydrous Iron Oxide-Impregnated Hybrid Polymer. Metals 2020, 10, 1630. https://doi.org/10.3390/met10121630
Marjanovic V, Peric-Grujic A, Ristic M, Marinkovic A, Markovic R, Onjia A, Sljivic-Ivanovic M. Selenate Adsorption from Water Using the Hydrous Iron Oxide-Impregnated Hybrid Polymer. Metals. 2020; 10(12):1630. https://doi.org/10.3390/met10121630
Chicago/Turabian StyleMarjanovic, Vesna, Aleksandra Peric-Grujic, Mirjana Ristic, Aleksandar Marinkovic, Radmila Markovic, Antonije Onjia, and Marija Sljivic-Ivanovic. 2020. "Selenate Adsorption from Water Using the Hydrous Iron Oxide-Impregnated Hybrid Polymer" Metals 10, no. 12: 1630. https://doi.org/10.3390/met10121630
APA StyleMarjanovic, V., Peric-Grujic, A., Ristic, M., Marinkovic, A., Markovic, R., Onjia, A., & Sljivic-Ivanovic, M. (2020). Selenate Adsorption from Water Using the Hydrous Iron Oxide-Impregnated Hybrid Polymer. Metals, 10(12), 1630. https://doi.org/10.3390/met10121630