Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel
Abstract
:1. Introduction
2. Experimental Research of Steel P91
2.1. Material and Long-Term Ageing
2.2. Experimental Research Methodology
3. Numerical Simulation of Fracture Toughness
3.1. Methodology of the Numerical Simulation of Fracture Toughness
3.2. Numerical Model
3.3. Numerical Determination of SIF
4. Results and Discussion
4.1. Results of Experimental Research
4.2. Results of Numerical Fracture Toughness Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, T.L. Fracture Mechanics, Fundamentals and Applications; CRC Press Inc.: Boca Raton, FL, USA; Ann Arbor, MI, USA; Boston, MA, USA, 1991; 793p, ISBN 0-8493-4277-5. [Google Scholar]
- Zare, A.; Kosari, E.S.M.; Asadi, I.; Bigham, A.; Bigham, Y. Finite element method analysis of stress intensity factor in different edge crack positions, and predicting their correlation using neural network method. Res. J. Recent Sci. 2014, 3, 69–73. [Google Scholar]
- Peiyuan, L.; Li, C.; Xiaojun, Y.; Dawei, H.; Xiaoyu, Q.; Xiaoyong, Z. A temperature-dependent model for predicting the fracture toughness of superalloys at elevated temperature. Theor. Appl. Fract. Mec. 2018, 93, 311–318. [Google Scholar] [CrossRef]
- Sakib, A.R.N.; Adnan, A. On the size-dependent critical stress intensity factor of confined brittle nanofilms. Eng. Fract. Mech. 2012, 86, 13–22. [Google Scholar] [CrossRef]
- Mohsin, N.R. Comparison between theoretical and numerical solutions for center, single edge and double edge cracked finite element plate subjected to tension stress. Int. J. Mech. Prod. Eng. Res. Dev. 2015, 5, 11–20. [Google Scholar]
- Kacianauskas, R.; Zenon, M.; Zarnovskij, V.; Stupak, E. Three-dimensional correction of the stress intensity factor for plate with a notch. Int. J. Fract. 2005, 136, 75–98. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Pinho, A.P.; Pereira, A.B.; Paiva, O.C. Evaluation of welded joints in P91 steel under different heat-treatment conditions. Metals 2020, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Blinn, B.; Görzen, D.; Fischer, T.; Kuhn, B.; Beck, T. Analysis of the thermomechanical fatigue behavior of fully ferritic high chromium steel Crofer®22 H with cyclic indentation testing. Appl. Sci. 2020, 10, 6461. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Y.; Zhao, J. Elastoplastic fracture analysis of the P91 steel welded joint under repair welding thermal shock based on XFEM. Metals 2020, 10, 1285. [Google Scholar] [CrossRef]
- Bertrand, F.; Marie, N.; Bachrata, A.; Brun-Magaud, V.; Droin, J.B.; Manchon, X.; Herbreteau, K.; Farges, B.; Carluec, B.; Poumerouly, S.; et al. Status of severe accident studies at the end of the conceptual design of ASTRID: Feedback on mitigation features. Nucl. Eng. Des. 2018, 326, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Sasikala, G.; Ray, S.K.; Mannan, S.L. Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal. Mater. Sci. Eng. A 2003, 359, 86–90. [Google Scholar] [CrossRef]
- Thomas Paul, V.; Saroja, S.; Vijayalakshmi, M. Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. J. Nucl. Mater. 2008, 378, 273–281. [Google Scholar] [CrossRef]
- Baltušnikas, A.; Lukošiūtė, I.; Makarevičius, V.; Kriūkienė, R.; Grybėnas, A. Influence of thermal exposure on structural changes of M23C6 carbide in P91 steel. J. Mater. Eng. Perform. 2016, 25, 1945–1951. [Google Scholar] [CrossRef]
- ISO 6892-1 Metallic Materials–Tensile Testing–Part 1: Method of Test at Room Temperature; European Committee for Standardization: Brussels, Belgium, 2009.
- ISO 6892-2 Metallic Materials–Tensile Testing–Part 2: Method of Test at Elevated Temperature; European Committee for Standardization: Brussels, Belgium, 2011.
- ASTM E399-12e3 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2012.
- ABAQUS/Standard User’s Manual, Version 6.11. 2011. Available online: http://130.149.89.49:2080/v6.11/index.html (accessed on 10 December 2020).
- Grybėnas, A.; Makarevičius, V.; Baltušnikas, A.; Lukošiūtė, I.; Kriūkienė, R. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging. Mat. Sci. Eng. A Struct. 2017, 696, 453–460. [Google Scholar] [CrossRef]
- Baek, J.H.; Kim, S.H.; Lee, C.B.; Hahn, D.H. Mechanical properties and microstructural evolution of modified 9Cr-1Mo steel after long-term ageing for 50,000 h. Met. Mater. Int. 2009, 15, 565–573. [Google Scholar] [CrossRef]
- Zieliński, A.; Dobrzański, J. Characteristics of changes in properties and structure of X10CrMoVNb9-1 steel due to long-term impact of temperature and stress. Arch. Mater. Sci. 2013, 60, 72–78. [Google Scholar]
- Cumino, G.; Di Cuonzo, S.; Di Gianfrancesco, A.; Tassa, O. Advanced high chromium ferritic steels for boiler components operating at high temperature. Lat. Am. Appl. Res. 2002, 32, 229–235. [Google Scholar]
- Junek, M.; Svobodova, M.; Janovec, J.; Horvath, J.; Duchacek, P. Long-term thermal degradation of narrow gap orbital welded P91 and P92 steels. Int. J. Press. Vessels Pip. 2020, 185, 104133. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | N | Al | Cr | Mo | Cu | Nb | Ni | V |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.094 | 0.38 | 0.35 | 0.006 | <0.0005 | 0.035 | 0.012 | 8.78 | 0.96 | 0.07 | 0.08 | 0.16 | 0.18 |
Test Temperature (°C) | Ageing Time at 650 °C (h) | Rp (MPa) | Rm (MPa) | Agt (%) | At (%) | E (GPa) |
---|---|---|---|---|---|---|
Room temperature | 0 | 513 | 666 | 9.8 | 23 | 214 |
790 | 507 | 658 | 9.9 | 23 | 212 | |
4150 | 501 | 651 | 9.5 | 22 | 212 | |
11,000 | 487 | 637 | 9.2 | 21 | 209 | |
550 | 0 | 350 | 385 | 2.0 | 27 | 166 |
790 | 350 | 388 | 2.5 | 27 | 165 | |
4150 | 349 | 381 | 2.0 | 28 | 165 | |
11,000 | 337 | 367 | 2.0 | 28 | 162 |
Ageing at 650 °C (h) | PQ (kN) | Pmax (kN) | KQ (MPa√m) | Kmax (MPa√m) |
---|---|---|---|---|
0 | 42.4 | 82.7 | 75.1 | 146.4 |
790 | 41.4 | 81.3 | 73.4 | 143.5 |
4150 | 41.9 | 78.0 | 73.9 | 137.5 |
11,000 | 41.1 | 77.0 | 70.6 | 135.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janulionis, R.; Dundulis, G.; Grybėnas, A. Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel. Metals 2020, 10, 1686. https://doi.org/10.3390/met10121686
Janulionis R, Dundulis G, Grybėnas A. Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel. Metals. 2020; 10(12):1686. https://doi.org/10.3390/met10121686
Chicago/Turabian StyleJanulionis, Remigijus, Gintautas Dundulis, and Albertas Grybėnas. 2020. "Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel" Metals 10, no. 12: 1686. https://doi.org/10.3390/met10121686
APA StyleJanulionis, R., Dundulis, G., & Grybėnas, A. (2020). Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel. Metals, 10(12), 1686. https://doi.org/10.3390/met10121686