Study on Grinding and Deformation Fracture Control of Cold Rolled Titanium Strip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cold Rolling and Physical Parameters
2.2. Mesh Generation and Geometric Model
2.3. Boundary and Initial Conditions
3. Results
4. Cold-Rolling Test Verification
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A. Finite Element simulation of the edge-trimming/cold rolling sequence: Analysis of edge cracking. J. Mater. Process. Technol. 2012, 212, 1049–1060. [Google Scholar] [CrossRef]
- Lin, D.; Wang, L.; Meng, F.Q.; Cui, J.Z.; Le, Q.C. Effects of second phases on fracture behavior of Mg-10Gd-3Y-0.6Zr alloy. Trans. Nonferrous Met. Soc. China 2010, 20, 421–425. [Google Scholar] [CrossRef]
- Kwon, H.C.; Lee, H.W.; Kim, H.Y.; Lm, Y.T.; Park, H.D.; Lee, D.L. Surface wrinkle defect of carbon steel in the hot bar rolling process. J. Mater. Process. Technol. 2009, 209, 4476–4483. [Google Scholar] [CrossRef]
- Zhao, J.W.; Huo, M.S.; Ma, X.G.; Jia, F.H.; Jiang, Z.Y. Study on edge cracking of copper foils in micro rolling. Mater. Sci. Eng. A 2019, 747, 53–62. [Google Scholar] [CrossRef]
- Zhou, Y.; Mo, J.L.; Cai, Z.B.; Deng, C.G.; Peng, J.F.; Zhu, M.H. Third-body and crack behavior in white etching layer induced by sliding–rolling friction. Tribol. Int. 2019, 140, 105882. [Google Scholar] [CrossRef]
- Chen, G.; Ren, C.Z.; Lu, L.P.; Ke, Z.H.; Qin, X.D.; Ge, X. Determination of ductile damage behaviors of high strain rate compression deformation for Ti-6Al-4V alloy using experimental numerical combined approach. Eng. Fract. Mech. 2018, 222, 499–520. [Google Scholar] [CrossRef]
- Wang, L.N.; Shi, Y.D.; Zhang, Y.L.; Bai, Y.; Lei, S. Ductile-to-brittle fracture of CP titanium with torsion deformation. Mater. Lett. 2018, 217, 263–266. [Google Scholar] [CrossRef]
- Yang, C.P.; Dong, H.B.; Hua, Z.H. Micro-mechanism of central damage formation during cross wedge rolling. J. Mater. Process. Technol. 2018, 252, 322–332. [Google Scholar] [CrossRef]
- Katani, S.; Madadi, F.; Atapour, M.; Rad, S.Z. Micromechanical modelling of damage behavior of Ti–6Al–4V. Mater. Des. 2013, 49, 1016–1021. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Li, J.; Su, C.Y.; Lu, L.; Zhang, p.; Chang, L.; Miao, X.T.; Zhou, B.B.; He, X.H.; Zhou, C.Y. Investigation on fatigue crack growth behavior for commercial pure titanium at different crack tip plastic deformed levels. Theor. Appl. Fract. Mech. 2019, 100, 1–13. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zeng, W.D.; Zhao, Y.Q. Influence of Deformation Parameters on Fracture Mechanism of Ti40 Titanium Alloy. Rare Metal Mater. Eng. 2017, 46, 1207–1213. [Google Scholar]
- Briffod, F.; Bleuset, A.; Shiraiwa, T.; Enoki, M. Effect of crystallographic orientation and geometrical compatibility on fatigue crack initiation and propagation in rolled Ti-6Al-4V alloy. Acta Mater. 2019, 177, 56–67. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahsan, Q.; Kurny, A.S.W. Effect of rolling on tensile and fracture of Al-4.5Cu-3.4Fe cast composite. J. Mater. Technol. 2007, 182, 215–219. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Zhou, Z.J.; Zhong, M.; Tan, J. Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W–Y2O3 alloy. Mater. Sci. Eng. A 2015, 646, 19–24. [Google Scholar] [CrossRef]
- Turczyn, S. The effect of the roll-gap shape factor on internal defects in rolling. J. Mater. Process. Technol. 1996, 60, 275–282. [Google Scholar] [CrossRef]
- Nioi, M.; Pinna, C.; Celotto, S.; Swart, E.; Farrugia, D.; Husain, Z.; Ghadbeigi, H. Finite element modelling of surface defect evolution during hot rolling of Silicon steel. J. Mater. Process. Technol. 2019, 268, 181–191. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. Trans. ASME 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Soyarslan, C.; Tekkaya, A.E. Prevention of internal cracks in forward extrusion by means of counter pressure: A numerical treatise. Steel Res. Int. 2009, 80, 671–679. [Google Scholar]
- Mashayekhi, M.; Torabian, N.; Poursina, M. Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process. Simul. Model. Pract. Theory 2011, 19, 612–625. [Google Scholar] [CrossRef]
- Yan, Y.X.; Sun, Q.; Chen, J.J.; Pan, H.L. The initiation and propagation of edge cracks of silicon steel during tandem cold rolling process based on the Gurson–Tvergaard–Needleman damage model. J. Mater. Process. Technol. 2013, 213, 598–605. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, J.J.; Li, X.X.; Pan, H.L. Parametric Study of Edge Crack of Silicon Steel Strip in Cold Rolling based on a Shear Modified GTN Damage Model. Procedia Mater. Sci. 2014, 3, 1632–1637. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zan, D.Q.; Chen, J.J.; Pan, H.L. Analysis of edge crack behavior of steel sheet in multi-pass cold rolling based on a shear modified GTN damage model. Theor. Appl. Fract. Mech. 2015, 80, 259–266. [Google Scholar] [CrossRef]
- Dwivedi, S.; Rana, R.S.; Rana, A.; Rajpurohit, S.; Purohit, R. Investigation of damage in small deformation in hot rolling process using FEM. Mater. Today Proc. 2017, 4, 2360–2372. [Google Scholar] [CrossRef]
- Zhang, D.F.; Dai, Q.W.; Fang, L.; Xu, X.X. Prediction of edge cracks and plastic-damage analysis of Mg alloy sheet in rolling. Trans. Nonferrous Met. Soc. China 2011, 21, 1112–1117. [Google Scholar] [CrossRef]
- Xing, J.Z.; Li, J. ANSYS modeling method and mesh generation. China Water Transp. 2006, 9, 116–118. [Google Scholar]
CP-Ti Strip | Roll | ||||
---|---|---|---|---|---|
Density (kg·m−3) | Elastic Modulus (MPa) | Poisson ratio | Size (m) | Length (m) | Diameter (m) |
4510 | 108,544 | 0.3 | 0.05 × 0.05 × 0.003 | 1.25 | 0.5 |
σ | ε | σ | ε | σ | ε | σ | ε |
---|---|---|---|---|---|---|---|
323 | 0 | 324 | 0 | 400 | 0 | 430 | 0 |
430 | 0.07 | 452 | 0.07 | 524 | 0.07 | 586 | 0.07 |
501 | 0.16 | 524 | 0.16 | 605 | 0.16 | 687 | 0.16 |
564 | 0.26 | 596 | 0.25 | 702 | 0.26 | 744 | 0.26 |
612 | 0.35 | 622 | 0.35 | 726 | 0.36 | 802 | 0.35 |
670 | 0.45 | 684 | 0.45 | 761 | 0.45 | 816 | 0.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yu, W.; Dong, E.; Zhang, Z.; Shi, J.; Gong, G. Study on Grinding and Deformation Fracture Control of Cold Rolled Titanium Strip. Metals 2020, 10, 323. https://doi.org/10.3390/met10030323
Zhang J, Yu W, Dong E, Zhang Z, Shi J, Gong G. Study on Grinding and Deformation Fracture Control of Cold Rolled Titanium Strip. Metals. 2020; 10(3):323. https://doi.org/10.3390/met10030323
Chicago/Turabian StyleZhang, Jiaming, Wei Yu, Entao Dong, Zeyu Zhang, Jiaxin Shi, and Gaoxiang Gong. 2020. "Study on Grinding and Deformation Fracture Control of Cold Rolled Titanium Strip" Metals 10, no. 3: 323. https://doi.org/10.3390/met10030323
APA StyleZhang, J., Yu, W., Dong, E., Zhang, Z., Shi, J., & Gong, G. (2020). Study on Grinding and Deformation Fracture Control of Cold Rolled Titanium Strip. Metals, 10(3), 323. https://doi.org/10.3390/met10030323