Metal Plasticity and Fatigue at High Temperature
1. Introduction and Scope
2. Contributions
3. Conclusions
Acknowledgments
Conflicts of Interest
Dedication
References
- Liu, D.; Pons, D.J. An explicit creep-fatigue model for engineering design purposes. Metals 2018, 8, 853. [Google Scholar] [CrossRef] [Green Version]
- Kloc, L.; Sklenicka, V.; Dymacek, P. Transient effect in creep of Sanicro 25 austenitic steel and their modelling. Metals 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Aigner, R.; Garb, C.; Leitner, M.; Stoschka, M.; Grun, F. Application of a -approach for fatigue assessment of cast aluminum alloys at elevated temperature. Metals 2018, 8, 1033. [Google Scholar] [CrossRef] [Green Version]
- Poulain, T.; de Baglion, L.; Mendez, J.; Henaff, G. Influence of strain rate and waveshape on environmentally-assisted cracking during low-cycle fatigue of a 304L austenitic stainless steel in a PWR water environment. Metals 2019, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Szmytka, F.; Osmond, P.; Remy, L.; Masson, P.D.; Forre, A.; Hocke, F.X. Some recent advances on thermal-mechanical fatigue design and upcoming challenges for the automotive industry. Metals 2019, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Mosenbacher, A.; Eiber, M.; Hoyer, M.; Riva, M.; Christ, H.J. Thermomechanical fatigue of lost foam cast Al-Si cylinder heads-assessment of crack origin based on the evaluation of pore distribution. Metals 2019, 9, 821. [Google Scholar] [CrossRef] [Green Version]
- Ghodrat, S.; Kalra, A.; Kestens, L.A.I.; Riemslag, T.A.C. Thermo-mechanical fatigue lifetime assessment of spheroidal cast iron at different thermal constraint levels. Metals 2019, 9, 1068. [Google Scholar] [CrossRef] [Green Version]
- Engel, B.; Made, L.; Lion, P.; Moch, N.; Gottschalk, H.; Beck, T. Probabilistic modeling of slip system-based shear stresses and fatigue behavior of coarse-grained Ni-based superalloy considering local grain anisotropy and grain orientation. Metals 2019, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zhan, L.; Xu, Y.; Liu, C.; Wang, J.; Zhao, X.; Xu, L.; Tong, C.; Jin, G.; Wang, Q.; et al. Stress relaxation aging behavior and constitutive modelling of AA7150-T7751 under different temperatures, initial stress levels and pre-strains. Metals 2019, 9, 1215. [Google Scholar] [CrossRef] [Green Version]
- Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G. Flow stress of bcc metals over a wide range of temperature and strain rates. Metals 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Srnec Novak, J.; De Bona, F.; Benasciutti, D. An isotropic model for cyclic plasticity calibration on the whole shape of hardening/softening evolution curve. Metals 2019, 9, 950. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benasciutti, D.; Moro, L.; Srnec Novak, J. Metal Plasticity and Fatigue at High Temperature. Metals 2020, 10, 326. https://doi.org/10.3390/met10030326
Benasciutti D, Moro L, Srnec Novak J. Metal Plasticity and Fatigue at High Temperature. Metals. 2020; 10(3):326. https://doi.org/10.3390/met10030326
Chicago/Turabian StyleBenasciutti, Denis, Luciano Moro, and Jelena Srnec Novak. 2020. "Metal Plasticity and Fatigue at High Temperature" Metals 10, no. 3: 326. https://doi.org/10.3390/met10030326
APA StyleBenasciutti, D., Moro, L., & Srnec Novak, J. (2020). Metal Plasticity and Fatigue at High Temperature. Metals, 10(3), 326. https://doi.org/10.3390/met10030326