Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Observation
3.1.1. As-Built Specimens
3.1.2. HT Specimens
3.2. Analysis of Oxygen Content
3.3. Creep Properties
4. Discussion
4.1. Characteristics of δ and Laves Phases and Their Effects on Fracture Mechanism
4.2. Microstructural Differences and Their Effects on Creep Properties
4.3. Effects of Oxides on Microstructure and Creep Properties
5. Conclusions
- (1)
- The V-SLM showed a larger-grained texture. This included dendritic structures, and precipitation such as a Laves phase, which had a preferable orientation due to the lower cooling rate during the SLM process.
- (2)
- The V-SLM specimen had a small amount of δ phase and did not precipitate uniformly along interdendritic regions.
- (3)
- While the Ar-SLM specimen experienced brittle fractures due to crack propagation along the δ phase, the V-SLM specimen experienced ductile fractures due to voids in the Laves phase.
- (4)
- The V-SLM specimen showed better creep properties due to larger grain size and preferable grain orientation.
- (5)
- The V-SLM specimen had a lower Al/Ti-rich oxide density. This promoted coprecipitation of the γ′ and γ″ phases, and improved the stability of the γ″ phase. Thus, it was more difficult for it to transform to the δ phase, and the V-SLM specimen showed better creep life.
Author Contributions
Funding
Conflicts of Interest
References
- Jasthi, B.K.; Chen, E.; Kaligotla, B.; Curtis, T.; West, M.; Widener, C. Frictionstir processing of cast alloy 718. Superalloys 2016, 8, 505–511. [Google Scholar]
- Nowotnik, A. Nickel-based superalloys. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Kuo, Y.L.; Horikawa, S.; Kakehi, K. The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by selective laser melting. Mater. Design 2017, 116, 411–418. [Google Scholar] [CrossRef]
- Sui, S.; Tan, H.; Chen, H.; Zhong, C.; Li, Z.; Fan, W.; Gasser, A.; Huang, W. The infuluence of Laves phase on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019, 164, 413–427. [Google Scholar] [CrossRef]
- Kanagarajah, P.; Brenne, F.; Niendorf, T.; Maier, H.J. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cycle loading. Mater. Sci. Eng. A 2013, 588, 188–195. [Google Scholar] [CrossRef]
- Brenne, F.; Niendorf, T.; Maier, H.J. Addively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 2013, 213, 1558–1564. [Google Scholar] [CrossRef]
- Osakada, K.; Siomi, M. Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tools Manuf. 2006, 46, 1188–1193. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, D.; Gao, M.; Chen, R.; Feng, Z.; Poprawe, R.; Schleifenbaum, J.H.; Ziegler, S. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mat. Sci. Eng. A 2019, 767, 138327. [Google Scholar] [CrossRef]
- Kuo, Y.L.; Nagahari, T.; Kakehi, K. The effect of post-process on the microstructure and creep properties of Alloy 718 built up by selective laser melting. Materials 2018, 11, 996. [Google Scholar] [CrossRef] [Green Version]
- Chlebus, E.; Gruber, K.; Kuznicka, B.; Kurzac, J.; Kurzynowski, T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2015, 39, 647–655. [Google Scholar] [CrossRef]
- Kuo, Y.L.; Horikawa, S.; Kakehi, K. Effects of build direction and heat treatment on creep properties of Ni-based duperalloy built up by additive manufacturing. Scripta Mater. 2017, 129, 74–78. [Google Scholar] [CrossRef]
- Moussaoui, K.; Rubio, W.; Mousseigne, M.; Sultan, T.; Rezai, F. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porpsity, microstructure and mechanical properties. Mater. Sci. Eng. A 2018, 735, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Ojo, O.A.; Li, Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 2014, 77, 85–95. [Google Scholar] [CrossRef]
- Bean, G.E.; Witkin, D.B.; Mclouth, T.D.; Patel, D.N.; Zaldivar, R.J. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit. Manuf. 2018, 22, 207–215. [Google Scholar] [CrossRef]
- Shohoji, N. Roles of unstable chemical species and non-equilibrium reaction routes on properties of reaction product—A Review. Surf. Interfaces Mater. 2014, 2, 182–205. [Google Scholar] [CrossRef] [Green Version]
- Tao, P.; Li, H.; Huang, B.; Hu, Q.; Gong, S.; Xu, Q. The crystal growth, intercellular spacing and microsegregation of selective laser melted Inconel 718 superalloy. Vacuum 2019, 159, 382–390. [Google Scholar] [CrossRef]
- Fisher, K. Fundamental Solidification; Trans Tech Pubrications Ltd.: Stafa-Zurich, Switzerland, 1998. [Google Scholar]
- Rae, C.M.F.; Reed, R.C. Primary creep in single crystal superalloys: Origins, mechanisms and effects. Acta Mater. 2007, 55, 1067–1081. [Google Scholar] [CrossRef]
- Theska, F.; Stanojevic, A.; Oberwinkler, B.; Ringer, S.P.; Primig, S. On conventional versus direct ageing of Alloy 718. Acta Mater. 2018, 156, 116–124. [Google Scholar] [CrossRef]
- Gallmeyer, T.G.; Moorthy, S.; Kappes, B.B.; Mills, M.J.; Amin-Ahmadi, B.; Stebner, A.P. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit. Manufact. 2019. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, C.; Lu, C.; Ding, W.; Hirose, A.; Kobayashi, K.F. Study of the effect of δ phase on hydrogen embrittlement of Inconel 718 by notch tensile test. Corros. Sci. 2005, 47, 355–367. [Google Scholar] [CrossRef]
- Ji, Y.; Lou, Y.; Qu, M.; Rowatt, J.D.; Zhang, F.; Simpson, T.W.; Chen, L.Q. Predicting coherency loss of γ” precipitates in IN718 superalloy. Metall. Mater. Transact. A 2016, 47, 3225–3247. [Google Scholar] [CrossRef]
- Ping, D.H.; Gu, Y.F.; Cui, C.Y.; Harada, H. Stability of nanoscale co-precipitates in a superalloy: A combined first principales and atom probe tomography study. Phys. Rev. B 2007, 76, 224102. [Google Scholar]
- Western Australian Speciality AlloysPty Ltd. Certificate of Analysis; WASA: Canning Vale, Australia.
Power (W) | Scanning Speed (mm/s) | Hatch Spacing (mm) | Thickness (mm) |
---|---|---|---|
280 | 450 | 0.03 | 0.2 |
Ni | Cr | Nb | Mo | Ti | Al | Co | Cu | C | Si | Mn | O | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
52.73 | 18.92 | 5.21 | 3.02 | 0.90 | 0.62 | 0.02 | 0.04 | 0.06 | 0.19 | 0.20 | 160 ppm | Bal. |
Specimen | Vertical | Horizontal |
---|---|---|
Ar-SLM | 80 | 20 |
V-SLM | 390 | 100 |
HEADING | Ni | Nb | Cr | Fe | Mo | Ti | Al |
---|---|---|---|---|---|---|---|
As-Built | 35.6 | 29.8 | 12.8 | 12.8 | 8.0 | 0.7 | 0.2 |
HT | 39.8 | 27.1 | 11.6 | 11.6 | 8.4 | 1.2 | 0.3 |
Specimen | Number Density (Unit/mm2) | Volume Fraction (%) |
---|---|---|
Ar-SLM | 6.6 × 105 | 8.1 |
V-SLM | 2.5 × 104 | 3.4 |
Specimen | Powder | Specimen |
---|---|---|
Ar-SLM | 190 | 141 |
V-SLM | 160 | 78 |
Specimen | Number Density (Unit/mm2) | Volume Fraction (10−2%) | Theoretical Volume Fraction (10−2%) | |
---|---|---|---|---|
Ar-SLM | As-Built | 2.18 × 105 | 4.50 | 6.18 |
HT | 3.01 × 105 | 5.88 | - | |
V-SLM | As-Built | 2.70 × 105 | 1.24 | 3.44 |
HT | 1.72 × 105 | 1.68 | - |
Specimen | Ar-SLM | V-SLM |
---|---|---|
Dendrite Arm Spacing (μm) | 0.5–1.0 | 10 |
Cooling Rate (K/s) | 105–106 | 6.0 × 102 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagahari, T.; Nagoya, T.; Kakehi, K.; Sato, N.; Nakano, S. Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment. Metals 2020, 10, 362. https://doi.org/10.3390/met10030362
Nagahari T, Nagoya T, Kakehi K, Sato N, Nakano S. Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment. Metals. 2020; 10(3):362. https://doi.org/10.3390/met10030362
Chicago/Turabian StyleNagahari, Toshiki, Taigi Nagoya, Koji Kakehi, Naoko Sato, and Shizuka Nakano. 2020. "Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment" Metals 10, no. 3: 362. https://doi.org/10.3390/met10030362
APA StyleNagahari, T., Nagoya, T., Kakehi, K., Sato, N., & Nakano, S. (2020). Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment. Metals, 10(3), 362. https://doi.org/10.3390/met10030362