Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave
Abstract
:1. Introduction
2. Materials and Methods
2.1. Titanium Ore
2.2. Reactant and Leaching Tests
3. Results
3.1. Type of Leaching Agent
3.2. Temperature Effect
3.3. Reaction Time Effect
3.4. Concentration Effect of Leaching Agents
3.5. Solid–Liquid Ratio Effect
3.6. Stirring Speed Effect
3.7. Residues Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Das, G.K.; Pranolo, Y.; Zhu, Z.; Cheng, C.Y. Leaching of ilmenite ores by acidic chloride solutions. Hydrometallurgy 2013, 133, 94–99. [Google Scholar] [CrossRef]
- Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.E.; Markopouloset, C.H. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. J. Hazard. Mater 2008, 157, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Maisyarah, A.; Bari, F.; Rafezi Ahmad, K.; Hidayah, N. Leaching behaviour of Langkawi black sand for the recovery of titanium. APCBEE Procedia. 2012, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Habashi, F. Handbook of Extractive Metallurgy; Wiley-VCH: Hoboken, NJ, USA, 1997; Volume II. [Google Scholar]
- Nguyen, T.H.; Lee, M.S. A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies. Miner. Process. Extr. Metall. Rev. 2018, 231–247. [Google Scholar] [CrossRef]
- Haverkamp, R.G.; Kruger, D.; Rajashekar, R. The digestion of New Zealand ilmenite by hydrochloric acid. Hydrometallurgy 2016, 163, 198–203. [Google Scholar] [CrossRef]
- Gázquez, M.J.; Bolívar, J.P.; Garcia-Tenorio, R.; Vaca, F. A review of the production cycle of titanium dioxide pigment. Mater. Sci. Appl. 2014, 5, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Housecroft, C.; Sharpe, A. Química Inorgánica, 2nd ed.; Editorial Pearson Prentice Hall: Madrid, España, 2006. (In Spanish) [Google Scholar]
- Tedesco, P.H.; Rumi, V.B. Estudio de la factibilidad de la recuperación de titanio a partir de arenas titaníferas mediante extracción con fosfato de tributilo. Ind. y Qca. 1978, 247, 44. (In Spanish) [Google Scholar]
- Tavani, E.L.; Tedesco, P.H.; Krenkel, T.G. Beneficio de las arenas titaníferas de Bahía San Blas por vía hidrometalúrgica. Rev. Latin. Amer. Ing. Qca. Qca. Aplic. 1981, 77, 13–24. (In Spanish) [Google Scholar]
- Sarno, M.C.; Avanza, J.R. Análisis cinético de la lixiviación de un mineral concentrado. Facena 1986, 6, 259–270. (In Spanish) [Google Scholar]
- Sarno, M.C.; Avanza, J.R. Lixiviación de arenas titaníferas con ácido clorhídrico. Facena 1987, 7, 265–270. (In Spanish) [Google Scholar]
- Rosales, G.D.; Pinna, E.G.; Suarez, D.S.; Rodriguez, M.H. Recovery process of Li, Al and Si from lepidolite by leaching with HF. Minerals 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Suarez, D.S.; Pinna, E.G.; Rosales, G.D.; Rodriguez, M.H. Synthesis of lithium fluoride from spent lithium-ion batteries. Minerals 2017, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Habashi, F. Principles of Extractive Metallurgy; Gordon and Breach Science Publishers, Inc.: New York, NY, USA, 1980; Volume I. [Google Scholar]
- Quiroga, O.D.; Avanza, J.R.; Fusco, A.J. Modelado Cinético de las Transformaciones Fluido-Sólido Reactivo; Editorial Universitaria de la Universidad del Nordeste (EUDENE): Corrientes, Argentina, 1996. (In Spanish) [Google Scholar]
Region Analyzed | %Fe | %O | %Ti | %Si | %Ca | %Mg | %Al |
---|---|---|---|---|---|---|---|
Point 1 | 61.4 | 29.7 | 3.9 | 2.6 | 0.5 | - | 1.9 |
Point 2 | 49.74 | 20.78 | 1.79 | 20.62 | 2.91 | 4.16 | - |
Point 3 | 44.04 | 18.1 | 2.03 | 26.25 | 3.46 | 5.09 | 1.03 |
Sector Analyzed | %Fe | %O | %Mg | %Al | %Ca |
---|---|---|---|---|---|
Point 1 | 61.4 | 29.7 | 8.3 | 0.30 | 0.5 |
Point 2 | 55.3 | 30.5 | 7.5 | 0.28 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, M.H.; Rosales, G.D.; Pinna, E.G.; Tunez, F.M.; Toro, N. Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave. Metals 2020, 10, 497. https://doi.org/10.3390/met10040497
Rodriguez MH, Rosales GD, Pinna EG, Tunez FM, Toro N. Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave. Metals. 2020; 10(4):497. https://doi.org/10.3390/met10040497
Chicago/Turabian StyleRodriguez, Mario H., Gustavo D. Rosales, Eliana G. Pinna, Fernando M. Tunez, and Norman Toro. 2020. "Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave" Metals 10, no. 4: 497. https://doi.org/10.3390/met10040497
APA StyleRodriguez, M. H., Rosales, G. D., Pinna, E. G., Tunez, F. M., & Toro, N. (2020). Extraction of Titanium from Low-Grade Ore with Different Leaching Agents in Autoclave. Metals, 10(4), 497. https://doi.org/10.3390/met10040497