Stabilization and Crystal Characterization of Electric Arc Furnace Oxidizing Slag Modified with Ladle Furnace Slag and Alumina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Slag Sampling and Characterization
2.2. Dephosphorization of Steels
2.3. XRD and SEM Analysis
2.4. Image-Pro-Plus Processing and Analysis
2.5. f-CaO Content Determination
2.6. Laboratory-Scale Volume Expansion Testing
3. Results and Discussion
3.1. Dephosphorization of Modified Oxidizing Slag
3.2. XRD Analysis
3.3. SEM Analysis
3.4. Image-Pro-Plus Analysis
3.5. Comparison of Expansion and f-CaO Results
4. Conclusions
- (1)
- The dephosphorization rate of different LFSs using supplement A (LF/CaO = 1/1, Al2O3 content = 15–25%) was more than 45% between 1520 °C and 1600 °C. The phosphorus content of steel is less than 0.03% to meet the set standards of general engineering steel.
- (2)
- XRD results showed that different LFSs had C2S, C3S, CaO, and MgO as the major phases. The characteristics of LFS were altered after high-temperature slag modification, and the primary crystalline phases were FeO and gehlenite (Ca2Al2SiO7).
- (3)
- SEM analysis confirmed that phosphorus was concentrated in the C2S phase during dephosphorization. As the Al2O3 content exceeds 15%, about 2–8% of Al atoms replaced Si atoms, and the C2S phase fraction decreased from 31.4% to 17.1%.
- (4)
- The f-CaO content of the modified oxidizing slag was less than 0.41% (while those of LFS and EAFS were 0.9–3.4% and 1.2–1.4%, respectively). The modified oxidizing slag showed almost no expansion and conformed to the ASTM D2940 standards.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Setien, J.; Hernandez, D.; Gonzalez, J.J. Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 2009, 23, 1788–1794. [Google Scholar] [CrossRef]
- Durinck, D.; Arnout, S.; Mertens, G.; Boydens, E.; Jones, P.T.; Elsen, J.; Blanpain, B.; Wollants, P. Borate distribution in stabilized stainless-steel slag. J. Am. Ceram. Soc. 2008, 91, 548–554. [Google Scholar] [CrossRef]
- Shi, C.J. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002, 32, 459–462. [Google Scholar] [CrossRef]
- Shi, C.J.; Qian, J.S. High performance cementing materials from industrial slags—A review. Resour. Conserv. Recycl. 2000, 29, 195–207. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lim, H.-S.; Ismail, M.A. Quantitative evaluation of free cao in electric furnace slag using the ethylene glycol method. Constr. Build. Mater. 2017, 131, 676–681. [Google Scholar] [CrossRef]
- Loncnar, M.; van der Sloot, H.A.; Mladenovic, A.; Zupancic, M.; Kobal, L.; Bukovec, P. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. J. Hazard. Mater. 2016, 317, 147–157. [Google Scholar] [CrossRef]
- Bocci, E. Use of ladle furnace slag as filler in hot asphalt mixtures. Constr. Build. Mater. 2018, 161, 156–164. [Google Scholar] [CrossRef]
- Worldsteel. Steel Statistical Yearbook. Available online: https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html (accessed on 27 March 2020).
- Serjun, V.Z.; Mirtic, B.; Mladenovic, A. Evaluation of ladle slag as a potential material for building and civil engineering. Mater. Tehnol. 2013, 47, 543–550. [Google Scholar]
- Branca, T.A.; Colla, V.; Valentini, R. A way to reduce environmental impact of ladle furnace slag. Ironmak. Steelmak. 2009, 36, 597–602. [Google Scholar] [CrossRef]
- Okoye, P.U.; Abdullah, A.Z.; Hameed, B.H. Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate. Energy Conv. Manag. 2017, 133, 477–485. [Google Scholar] [CrossRef]
- Gu, X.; Yu, B.; Dong, Q.; Deng, Y. Application of secondary steel slag in subgrade: Performance evaluation and enhancement. J. Clean. Prod. 2018, 181, 102–108. [Google Scholar] [CrossRef]
- Papayianni, I.; Anastasiou, E. Effect of granulometry on cementitious properties of ladle furnace slag. Cem. Concr. Compos. 2012, 34, 400–407. [Google Scholar] [CrossRef]
- Guzzon, M.; Mapelli, C.; Sahajwalla, V.; Saha-Chaudhury, N.; Memoli, F.; Pustorino, M. The behaviour of the secondary metallurgy slag into the eaf. How to create a good foamy slag with the appropriate basicity using a mix of lime and recycled ladle slag as eaf slag former. In Proceedings of the 38th Seminário de Aciaria, Belo Horizonte, Brazil, 14 November 2019. [Google Scholar]
- Li, J.X.; Yu, Q.J.; Wei, J.X.; Zhang, T.S. Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 2011, 41, 324–329. [Google Scholar] [CrossRef]
- Wang, Q.A.; Yan, P.Y.; Feng, J.W. A discussion on improving hydration activity of steel slag by altering its mineral compositions. J. Hazard. Mater. 2011, 186, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, D.Q.; Zhuang, S.Y. The soundness of steel slag with different free cao and mgo contents. Constr. Build. Mater. 2017, 151, 138–146. [Google Scholar] [CrossRef]
- Rashad, A.M. A synopsis manual about recycling steel slag as a cementitious material. J. Mater. Res. Technol. 2019, 8, 4940–4955. [Google Scholar] [CrossRef]
- Guzzon, M.; Mapelli, C.; Memoli, F.; Marcozzi, M. Recycling of ladle slag in the eaf: Improvement of the foaming behaviour and decrease of the environmental impact. Rev. de Métall. 2007, 104, 171–178. [Google Scholar] [CrossRef]
- Varanasi, S.S.; More, V.M.R.; Rao, M.B.V.; Alli, S.R.; Tangudu, A.K.; Santanu, D. Recycling ladle furnace slag as flux in steelmaking: A review. J. Sustain. Metall. 2019, 5, 449–462. [Google Scholar] [CrossRef]
- Skaf, M.; Manso, J.M.; Aragón, Á.; Fuente-Alonso, J.A.; Ortega-López, V. Eaf slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Yildirim, I.Z.; Prezzi, M. Experimental evaluation of eaf ladle steel slag as a geo-fill material: Mineralogical, physical & mechanical properties. Constr. Build. Mater. 2017, 154, 23–33. [Google Scholar] [CrossRef]
- Brand, A.S.; Roesler, J.R. Steel furnace slag aggregate expansion and hardened concrete properties. Cem. Concr. Compos. 2015, 60, 1–9. [Google Scholar] [CrossRef]
- González-Ortega, M.A.; Cavalaro, S.H.P.; de Rodríguez Sensale, G.; Aguado, A. Durability of concrete with electric arc furnace slag aggregate. Constr. Build. Mater. 2019, 217, 543–556. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Le Saout, G.; Garcia-Diaz, E. The efficiency of quartz addition on electric arc furnace (eaf) carbon steel slag stability. J. Hazard. Mater. 2014, 279, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of microstructure on the leaching behaviour of electric arc furnace (eaf) carbon steel slag. Proc. Saf. Environ. Protect. 2016, 102, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Suito, H.; Inoue, R. Behavior of phosphorous transfer from cao-feto-p2o5(-sio2) slag to cao particles. ISIJ Int. 2006, 46, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Deniz, D.; Tutumluer, E.; Popovics, J.S. Evaluation of expansive characteristics of reclaimed asphalt pavement and virgin aggregate used as base materials. Transp. Res. Rec. 2010, 10–17. [Google Scholar] [CrossRef]
- Li, C.C.; Lin, C.M.; Hung, C.Y.; Chang, K.L.; Wu, W.T. Effect of al2o3/sio2 ratio on viscosity and structure of cao-al2o3-sio2-caf2mgo slag. Int. J. Mater. Res. 2019, 110, 247–252. [Google Scholar] [CrossRef]
- Diao, J.; Xie, B.; Wang, Y.; Guo, X. Recovery of phosphorus from dephosphorization slag produced by duplex high phosphorus hot metal refining. ISIJ Int. 2012, 52, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Kondratiev, A.; Jak, E. Predicting coal ash slag flow characteristics (viscosity model for the al2o3-cao-’feo’-sio2 system). Fuel 2001, 80, 1989–2000. [Google Scholar] [CrossRef]
- Wu, W.; Lin, C.M.; Chen, J.H.; Li, C.C.; Lin, K.H. Detection of Calcium in the Active Oxide. I600903; 1 October 2017. Available online: https://twpat1.tipo.gov.tw/tipotwoc/tipotwkm?!!FR_I600903 (accessed on 11 April 2020).
- Wang, G.; Wang, Y.H.; Gao, Z.L. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef]
- Waligora, J.; Bulteel, D.; Degrugilliers, P.; Damidot, D.; Potdevin, J.L.; Measson, M. Chemical and mineralogical characterizations of ld converter steel slags: A multi-analytical techniques approach. Mater. Charact. 2010, 61, 39–48. [Google Scholar] [CrossRef]
- Ortega-Lopez, V.; Manso, J.M.; Cuesta, I.I.; Gonzalez, J.J. The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications. Constr. Build. Mater. 2014, 68, 455–464. [Google Scholar] [CrossRef]
Specimen | Types | Chemical Composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | MgO | T-Fe | MnO | S | ||
LFS 1 | (1) | 45.9 | 21.6 | 4.2 | 8.6 | 1.8 | 0.3 | 0.867 |
LFS 2 | (2) | 50.2 | 11.7 | 19.9 | 4.9 | 2.1 | 0.3 | 0.727 |
LFS 3 | (3) | 44.1 | 17.5 | 3.4 | 17.9 | 2.3 | 0.6 | 0.567 |
LFS 4 | (1) | 55.4 | 27.2 | 2.7 | 5.8 | 1.5 | 0.4 | 0.547 |
LFS 5 | (1) | 52.1 | 19.3 | 14.8 | 4.9 | 0.7 | 0.1 | 0.994 |
LFS 6 | (2) | 52.3 | 5.1 | 28.9 | 5.4 | 0.5 | 0.1 | 0.911 |
LFS 7 | (1) | 46.4 | 21.1 | 3.9 | 7.0 | 1.6 | 0.5 | 0.772 |
LFS 8 | (1) | 52.6 | 23.6 | 4.2 | 8.8 | 0.3 | 0.2 | 0.828 |
LFS 9 | (3) | 40.3 | 15.9 | 4.8 | 13.1 | 4.5 | 0.6 | 0.542 |
LFS 10 | (1) | 47.7 | 21.8 | 4.3 | 10.4 | 2.2 | 0.7 | 0.690 |
EAFS 1 | 37.8 | 11.2 | 7.4 | 6.2 | 25.9 | 3.4 | 0.102 | |
EAFS 2 | 28.8 | 11.9 | 6.4 | 3.7 | 28.6 | 4.9 | 0.241 | |
EAFS 3 | 35.6 | 10.7 | 4.5 | 6.9 | 28.4 | 4.5 | 0.097 |
Supplements | LFS (g) | CaO (g) | Al2O3 (%) |
---|---|---|---|
A (for 200 g metal) | 3 | 3 | 15–25 |
A | 525 | 525 | 15–25 |
B | 1050 | 0 | 15–25 |
C | 0 | 1050 | 15–25 |
Sample | Chemical Composition (wt.%) | Initial [P] | Final [P] | De-P 1 | ||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | FexO | P2O5 | (%) | |||
S1 (A) | 24.4 | 8.4 | 21.7 | 41.3 | 0.551 | 0.0477 | 0.0197 | 58.7 |
S2 (A) | 25.8 | 7.9 | 20.1 | 40.2 | 0.455 | 0.0451 | 0.0211 | 53.2 |
S3 (A) | 24.5 | 8.6 | 17.6 | 44.5 | 0.546 | 0.0432 | 0.0191 | 55.8 |
S4 (A) | 27.2 | 7.3 | 22.3 | 27.2 | 0.643 | 0.0389 | 0.0156 | 59.9 |
S5 (A) | 22.3 | 8.1 | 20.4 | 33.6 | 0.757 | 0.0496 | 0.0152 | 69.4 |
S4 (B) | 23.4 | 9.9 | 15.3 | 35.6 | 0.445 | 0.0403 | 0.0221 | 45.2 |
S5 (B) | 16.6 | 13.9 | 20.3 | 33.8 | 0.375 | 0.0314 | 0.0192 | 38.9 |
S6 (B) | 20.8 | 8.8 | 24.8 | 25.9 | 0.397 | 0.0495 | 0.0324 | 34.5 |
S-(C) | 32.1 | 4.3 | 28.7 | 26.2 | 0.844 | 0.0514 | 0.0081 | 84.2 |
Sample | Phase | Chemical Composition, at.% | ||||||
---|---|---|---|---|---|---|---|---|
Ca | Si | Al | Fe | Mg | P | O | ||
S1 | I-FeO | 1.9 | 0.0 | 0.6 | 41.1 | 6.6 | 0.00 | 49.8 |
II-matrix | 14.8 | 5.8 | 14.0 | 7.1 | 0.8 | 0.00 | 57.4 | |
III-C2S | 25.7 | 10.4 | 2.6 | 1.1 | 0.3 | 0.32 | 59.5 | |
S2 | I-FeO | 2.5 | 0.2 | 0.9 | 40.1 | 7.6 | 0.00 | 48.7 |
II-matrix | 14.5 | 5.3 | 14.5 | 8.7 | 1.2 | 0.00 | 55.9 | |
S3 | I-FeO | 0.9 | 0.0 | 0.4 | 36.7 | 13.1 | 0.00 | 48.9 |
II-matrix | 15.1 | 6.1 | 13.2 | 5.8 | 1.0 | 0.00 | 58.9 | |
III-C2S | 28.6 | 8.2 | 7.3 | 1.1 | 0.4 | 0.28 | 54.1 | |
EAFS | I-FeO | 1.1 | 0.2 | 0.7 | 35.8 | 8.3 | 0.00 | 53.9 |
II-matrix | 13.3 | 4.6 | 14.8 | 4.5 | 0.1 | 0.00 | 61.9 | |
III-C2S | 33.1 | 17.5 | 0.4 | 1.0 | 0.1 | 0.47 | 47.4 |
Sample | S1A | S2A | S3A | S4A | S5A | S4B | S5B | S6B | S-C | EAF1 | EAF2 |
---|---|---|---|---|---|---|---|---|---|---|---|
f-CaO (%) | 0.31 | 0.31 | 0.26 | 0.41 | 0.37 | 0.18 | 0.13 | 0.21 | 0.7 | 1.2 | 1.4 |
Expansion (%) | 0.027 | NA 1 | NA 1 | 0.037 | NA 1 | 0.023 | 0.029 | NA 1 | 0.11 | 0.17 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-C.; Lin, C.-M.; Chang, Y.-E.; Chang, W.-T.; Wu, W. Stabilization and Crystal Characterization of Electric Arc Furnace Oxidizing Slag Modified with Ladle Furnace Slag and Alumina. Metals 2020, 10, 501. https://doi.org/10.3390/met10040501
Li C-C, Lin C-M, Chang Y-E, Chang W-T, Wu W. Stabilization and Crystal Characterization of Electric Arc Furnace Oxidizing Slag Modified with Ladle Furnace Slag and Alumina. Metals. 2020; 10(4):501. https://doi.org/10.3390/met10040501
Chicago/Turabian StyleLi, Chia-Chun, Chi-Ming Lin, Yu-En Chang, Wei-Ti Chang, and Weite Wu. 2020. "Stabilization and Crystal Characterization of Electric Arc Furnace Oxidizing Slag Modified with Ladle Furnace Slag and Alumina" Metals 10, no. 4: 501. https://doi.org/10.3390/met10040501
APA StyleLi, C. -C., Lin, C. -M., Chang, Y. -E., Chang, W. -T., & Wu, W. (2020). Stabilization and Crystal Characterization of Electric Arc Furnace Oxidizing Slag Modified with Ladle Furnace Slag and Alumina. Metals, 10(4), 501. https://doi.org/10.3390/met10040501