Effect of Cooling Rates on the Microstructure and Mechanical Property of La Modified Al7SiMg Alloys Processed by Gravity Die Casting and Semi-Solid Die Casting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Cooling Rates in Gravity Die Casting
3.2. Effect of Cooling Rates in Semi-Solid Die Casting
4. Discussion
5. Conclusions
- The effect of grain refinement is greatly enhanced with increasing cooling rate in the gravity die casting, with increasing the cooling rate from 0.2 to 9 K/s, for Al7SiMg alloys, the DAS and grain size of α-Al phase are reduced from 106 to 19 μm and 1321 to 485 μm, respectively, which results to the enhancement of UTS from 140 to 160 MPa.
- With 0.4 wt.% La addition to Al7SiMg alloys in the gravity die casting, the modification effect of La is enhanced with increasing cooling rate. When the cooling rate increases from 0.2 to 9 K/s, the Si particles are modified from flake-like to branching morphology, which evidently increases the UTS from 140 to 190 MPa and elongation from 2.5% to 4.6%.
- In the semi-solid die casting, when increasing the cooling rate from 30 to 130 K/s, for Al7SiMg alloys, the globular α-Al grains are refined from 133 to 44 μm, the morphology of eutectic Si transfers from acicular to well-branching structure. The UTS and elongation of Al7SiMg alloys are increased from 200 to 230 MPa and 11% to 15%, respectively.
- When 0.4 wt.% La is added to Al7SiMg alloys in the semi-solid die casting, although the Si particles are modified to fibrous morphology, La-rich phases with a large number are formed in net shape distribution, which has no positive effect on the UTS and elongation of alloys.
- Compared to the microstructures in gravity die casting, the α-Al refinement effect and Si modification effect are greatly enhanced in the semi-solid die casting, which results to an obvious increase in the strength and elongation of alloys.
Author Contributions
Funding
Conflicts of Interest
References
- Polmear, I. Light Alloys, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2005; pp. 220–226. [Google Scholar]
- Campbell, J. Castings, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2003; pp. 205–210. [Google Scholar]
- Hirsch, J. Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China 2014, 24, 1995–2002. [Google Scholar] [CrossRef]
- Kapranos, P. Current state of semi-solid net-shape die casting. Metals 2019, 9, 1301. [Google Scholar] [CrossRef] [Green Version]
- Midson, S.P. Industrial applications for aluminum semi-solid castings. Solid State Phenom. 2014, 217–218, 487–495. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ye, C.Y.; Shen, Y.P.; Chang, W.; StJohn, D.H.; Wang, G.; Zhai, Q.J. Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al–V–B master alloy. J. Alloys Compd. 2020, 812, 152022. [Google Scholar] [CrossRef]
- Zamani, M.; Seifeddine, S. Determination of optimum Sr level for eutectic Si modification in Al–Si cast alloys using thermal analysis and tensile properties. Int. J. Metalcast. 2016, 10, 457–465. [Google Scholar] [CrossRef]
- Riestra, M.; Ghassemali, E.; Bogdanoff, T.; Seifeddine, S. Interactive effects of grain refinement, eutectic modification and solidification rate on tensile properties of Al-10Si alloy. Mater. Sci. Eng. A 2017, 703, 270–279. [Google Scholar] [CrossRef]
- Moniri, S.; Shahani, A.J. Chemical modification of degenerate eutectics: A review of recent advances and current issues. J. Mater. Sci. 2019, 34, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Sigworth, G.K. The modification of Al-Si casting alloys: Important practical and theoretical aspects. Int. J. Metalcast. 2008, 22, 19–40. [Google Scholar] [CrossRef]
- Kang, J.; Su, R.; Wu, D.Y.; Liu, C.H.; Li, T.; Wang, L.S.; Narayanaswamy, B. Synergistic effects of Ce and Mg on the microstructure and tensile properties of Al-7Si-0.3Mg-0.2Fe alloy. J. Alloys Compd. 2019, 796, 267–278. [Google Scholar] [CrossRef]
- Pourbahari, B.; Emamy, M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy. Mater. Des. 2016, 94, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, G.S.; Emamy, M.; Rassizadehghani, J. The effect of mischmetal and heat treatment on the microstructure and tensile properties of A357 Al–Si casting alloy. Mater. Sci. Eng. A 2012, 556, 573–581. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Dai, Y.; Li, C. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater. Sci. Eng. A 2014, 597, 237–244. [Google Scholar] [CrossRef]
- Mao, G.L.; Yan, H.; Zhu, C.C.; Wu, Z.; Gao, W.L. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J. Alloys Compd. 2019, 806, 909–916. [Google Scholar] [CrossRef]
- Liu, W.Y.; Xu, C.; Xiao, W.L.; Liu, M.W.; Zhang, J.B.; Chen, J.X.; Ma, C.L. Effects of cooling rate on morphology of eutectic Si in RE modified Al-10wt.%Si alloy. Mater. Sci. Forum 2016, 850, 587–593. [Google Scholar] [CrossRef]
- Li, L.F.; Li, D.Q.; Mao, F.; Feng, J.; Zhang, Y.Z.; Kang, Y.L. Effect of cooling rate on eutectic Si in Al-7.0Si-0.3Mg alloys modified by La additions. J. Alloys Compd. 2020, 826, 154206. [Google Scholar] [CrossRef]
- Langlais, J.; Lemieux, A. The SEED technology for semi-solid processing of aluminum alloys: A metallurgical and process overview. Solid State Phenom. 2006, 116–117, 472–477. [Google Scholar] [CrossRef]
- Liang, G.F.; Ali, Y.; You, G.Q.; Zhang, M.X. Effect of cooling rate on grain refinement of cast aluminium alloys. Materialia 2018, 3, 113–121. [Google Scholar] [CrossRef]
- Guan, T.; Zhang, Z.; Bai, Y.; Li, B.; Wang, P. Enhanced Refinement of Al-Zn-Mg-Cu-Zr Alloy via Internal Cooling with Annular Electromagnetic Stirring above the Liquidus Temperature. Materials 2019, 12, 337. [Google Scholar] [CrossRef] [Green Version]
- Mao, F.; Chen, F.; Yan, G.; Wang, T.; Cao, Z. Effect of strontium addition on silicon phase and mechanical properties of Zn–27Al–3Si alloy. J. Alloys Compd. 2015, 622, 871–879. [Google Scholar] [CrossRef]
- Mao, F.; Yan, G.Y.; Xuan, Z.J.; Cao, Z.Q.; Wang, T.M. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. J. Alloys Compd. 2015, 650, 896–906. [Google Scholar] [CrossRef]
- Hosch, T.; England, L.G.; Napolitano, R.E. Analysis of the high growth-rate transition in Al–Si eutectic solidification. J. Mater. Sci. 2009, 44, 4892–4899. [Google Scholar] [CrossRef]
- Lu, S.Z.; Hellawell, A. The mechanism of silicon modification in Aluminum-Silicon alloys: Impurity induced twinning. Metall. Mater. Trans. A 1987, 18, 1721–1733. [Google Scholar] [CrossRef]
Alloy | Si | Mg | La | Ti | Sr | Others | Al |
---|---|---|---|---|---|---|---|
Al-7Si-0.3Mg | 7.05 | 0.368 | <0.01 | <0.0002 | <0.0001 | <0.10 | Bal. |
Al-7Si-0.3Mg-0.4La | 6.96 | 0.349 | 0.38 | <0.0002 | <0.0001 | <0.10 | Bal. |
Cooling Rate (K/s) | Alloys | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|---|
0.2 K/s | Al7SiMg | 93 ± 2.9 | 140 ± 0.5 | 2.2 ± 0.1 |
0.4 La | 94 ± 3.7 | 140 ± 0.5 | 2.5 ± 0.1 | |
1.5 K/s | Al7SiMg | 85 ± 1.9 | 130 ± 13 | 2.1 ± 0.8 |
0.4 La | 89 ± 2.8 | 160 ± 6.0 | 3.2 ± 0.7 | |
9 K/s | Al7SiMg | 95 ± 5.2 | 160 ± 13 | 2.1 ± 0.6 |
0.4 La | 91 ± 3.3 | 180 ± 4.2 | 4.6 ± 0.1 |
Cooling Rate (K/s) | Alloys | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|---|
30 K/s | Al7SiMg | 81 ± 2.3 | 200 ± 3.3 | 11 ± 1.5 |
0.4 La | 77 ± 2.3 | 190 ± 3.3 | 10 ± 0.8 | |
130 K/s | Al7SiMg | 100 ± 1.8 | 230 ± 5.8 | 15 ± 2.5 |
0.4 La | 100 ± 3.5 | 230 ± 2.4 | 11 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, D.; Feng, J.; Zhang, Y.; Kang, Y. Effect of Cooling Rates on the Microstructure and Mechanical Property of La Modified Al7SiMg Alloys Processed by Gravity Die Casting and Semi-Solid Die Casting. Metals 2020, 10, 549. https://doi.org/10.3390/met10040549
Li L, Li D, Feng J, Zhang Y, Kang Y. Effect of Cooling Rates on the Microstructure and Mechanical Property of La Modified Al7SiMg Alloys Processed by Gravity Die Casting and Semi-Solid Die Casting. Metals. 2020; 10(4):549. https://doi.org/10.3390/met10040549
Chicago/Turabian StyleLi, Longfei, Daquan Li, Jian Feng, Yongzhong Zhang, and Yonglin Kang. 2020. "Effect of Cooling Rates on the Microstructure and Mechanical Property of La Modified Al7SiMg Alloys Processed by Gravity Die Casting and Semi-Solid Die Casting" Metals 10, no. 4: 549. https://doi.org/10.3390/met10040549
APA StyleLi, L., Li, D., Feng, J., Zhang, Y., & Kang, Y. (2020). Effect of Cooling Rates on the Microstructure and Mechanical Property of La Modified Al7SiMg Alloys Processed by Gravity Die Casting and Semi-Solid Die Casting. Metals, 10(4), 549. https://doi.org/10.3390/met10040549