Effect of Basicity on Sintering Behavior and Metallurgical Properties of High-Chromium Vanadium-Titanium Magnetite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Procedure
2.3. Definition of Parameters
2.3.1. Vertical Sinter Speed
2.3.2. Tumbler Index
2.3.3. Productivity
2.3.4. Reduction Disintegration Index
2.3.5. Reducibility Index
2.3.6. Softening-Melting Properties
3. Results and Discussion
3.1. Effect of Basicity on Sinter Properties
3.2. Effect of Basicity on Reduction Properties
3.3. Effect of Basicity on Softening-Melting Properties
3.4. Comprehensive Index
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, G.-J.; Xue, X.-X.; Gao, Z.-X.; Jiang, T.; Yang, H.; Duan, P.-N. Effect of Cr2O3 on the Reduction and Smelting Mechanism of High-Chromium Vanadium-titanium Magnetite Pellets. ISIJ Int. 2016, 56, 1938–1947. [Google Scholar] [CrossRef] [Green Version]
- Jena, B.; Dreßler, W.; Reilly, I. Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada. Miner. Eng. 1995, 8, 159–168. [Google Scholar] [CrossRef]
- Takano, C.; Zambrano, A.P.; Nogueira, A.E.A.; Mourao, M.; Iguchi, Y. Chromites Reduction Reaction Mechanisms in Carbon–Chromites Composite Agglomerates at 1773 K. ISIJ Int. 2007, 47, 1585–1589. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-Y.; Zou, X.; Lu, X.-G.; Xie, X.-L.; Zheng, K.; Xiao, W.; Cheng, H.; Li, G.-S. Reductive kinetics of Panzhihua ilmenite with hydrogen. Trans. Nonferrous Met. Soc. China 2016, 26, 3266–3273. [Google Scholar] [CrossRef]
- Fu, W.-G.; Wen, Y.-C.; Xie, H.-E. Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting. J. Iron Steel Res. Int. 2011, 18, 7–10. [Google Scholar] [CrossRef]
- Fu, W.G.; Xie, H.E. Progress in Technologies of Vanadium-Bearing Titanomagnetite Smelting in PanGang. Steel Res. Int. 2011, 82, 501–504. [Google Scholar] [CrossRef]
- Umadevi, T.; Bandopadhyay, U.; Mahapatra, P.; Prabhu, M.; Ranjan, M. Influence of limestone particle size on iron ore sinter properties and productivity. Steel Res. Int. 2010, 81, 419–425. [Google Scholar] [CrossRef]
- Wang, H.-T.; Zhao, W.; Chu, M.-S.; Wang, R.; Liu, Z.-G.; Xue, X.-X. Effect and function mechanism of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite. J. Central South Univ. 2017, 24, 39–47. [Google Scholar] [CrossRef]
- Yu, Z.; Li, G.; Jiang, T.; Zhang, Y.; Zhou, F.; Peng, Z. Effect of Basicity on Titanomagnetite Concentrate Sintering. ISIJ Int. 2015, 55, 907–909. [Google Scholar] [CrossRef] [Green Version]
- Umadevi, T.; Sah, R.; Mahapatra, P.C. Influence of sinter basicity (CaO/SiO 2 ) on low and high alumina iron ore sinter quality. Miner. Process. Extr. Met. 2014, 123, 75–85. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, S.-T.; Jiang, T.; Xue, X. Influence of Basicity on High-Chromium Vanadium-Titanium Magnetite Sinter Properties, Productivity, and Mineralogy. JOM 2015, 67, 1203–1213. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, S.-T.; Tang, W.; Xue, X.-X. Investigations of MgO on Sintering Performance and Metallurgical Property of High-Chromium Vanadium-Titanium Magnetite. Minerals 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, S.; Tang, W.; Yang, H.; Xue, X.-X. Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite. Ironmak. Steelmak. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, K.-C.; Pan, J.; Fan, X.-H.; Hu, Y.-M.; John, C. Effect of fluxes on high iron and low silica sintering. J. Central South Univ. Technol. 2003, 10, 177–182. [Google Scholar] [CrossRef]
- Kasai, E.; Sakano, Y.; Kawaguchi, T.; Nakamura, T. Influence of Properties of Fluxing Materials on the Flow of Melt Formed in the Sintering Process. ISIJ Int. 2000, 40, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Guo, X. Effect of Al2O3 and SiO2 on formation and crystal structure of calcium ferrite containing Al2O3 and SiO2. J. Chin. Rare Earth Soc. 2008, 26, 205. [Google Scholar]
- Zhang, G.-L.; Wu, S.; Su, B.; Que, Z.-G.; Hou, C.-G.; Jiang, Y. Influencing factor of sinter body strength and its effects on iron ore sintering indexes. Int. J. Miner. Met. Mater. 2015, 22, 553–561. [Google Scholar] [CrossRef]
- Chen, Y.M.; Chen, R. Microstructure of Sinter and Pellet; Cental South University Press: Changsha, China, 2011; p. 63. (In Chinese) [Google Scholar]
- Kawaguchi, T.; Hara, M. Utilization of Biomass for Iron Ore Sintering. ISIJ Int. 2013, 53, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Y.; Sun, X.W.; Sheng, S.X. Intensified smelting of vanadium and titanium magnetite in blast furnace. Iron Steel. 2000, 35, 4–7. [Google Scholar]
- Qie, J.; Zhang, C.; Li, X.; Guo, Y.; Wang, H.; Wu, S. Lower SO2 Emissions in the Sintering Process Utilizing the Difference of Sulphur Contents of Iron Ores. ISIJ Int. 2017, 57, 2115–2123. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Yang, S.-T.; Jiang, T.; Xue, X.-X. Corrigendum: Influence of MgO in form of magnesite on properties and mineralogy of high chromium, vanadium, titanium magnetite sinters. Ironmak. Steelmak. 2015, 42, 320. [Google Scholar] [CrossRef]
Raw Materials | TFe | FeO | TiO2 | V2O5 | Cr2O3 | CaO | SiO2 | MgO | Al2O3 | P | S |
---|---|---|---|---|---|---|---|---|---|---|---|
HCVTM | 56.45 | 28.05 | 11.01 | 0.37 | 0.55 | 0.63 | 2.66 | 2.54 | 2.42 | 0.003 | 0.34 |
GA | 32.39 | - | 1.79 | 0.25 | 0.16 | 5.16 | 5.95 | 1.79 | 2.69 | 0.070 | 0.17 |
MP | 0.14 | - | 0.03 | - | - | 29.4 | 2.58 | 20.65 | 0.90 | - | - |
OM | 63.79 | 28.35 | 0.89 | 0.06 | 0.02 | 0.38 | 7.15 | 0.38 | 1.25 | 0.020 | 0.05 |
Quicklime | - | - | - | - | - | 60.80 | 3.42 | 2.87 | 1.11 | - | - |
Basicity | Mixed Sinter Raw Materials | |||||
---|---|---|---|---|---|---|
HCVTM | OM | RM | GA | MP | Quicklime | |
1.7 | 39.8 | 30.0 | 20.0 | 1.0 | 1.0 | 8.2 |
1.9 | 38.2 | 30.0 | 20.0 | 1.0 | 1.0 | 9.8 |
2.1 | 36.3 | 30.0 | 20.0 | 1.0 | 1.0 | 11.7 |
2.3 | 35.4 | 30.0 | 20.0 | 1.0 | 1.0 | 12.6 |
2.5 | 33.8 | 30.0 | 20.0 | 1.0 | 1.0 | 14.2 |
Item | Parameter | Item | Parameter |
---|---|---|---|
Sinter pot height | 700 mm | Sinter pot inner diameter | 320 mm |
Sinter weight | 100 kg | Pelletizing time | 10 min |
Ignition temperature | 1000 °C | Ignition time | 2 min |
Height of grate layer | 20 mm | Moisture | 10.0 ± 0.5% |
Ignition pressure | 8.00 kPa | Exhausting pressure | 12.0 kPa |
Basicity / % | zi1 | zi2 | zi3 | zi4 | zi5 | zi6 | fi | Fi = fi − f1 + 100 |
---|---|---|---|---|---|---|---|---|
1.7 | 15.81 | 1.33 | 71.17 | 47.3 | 69.9 | 74.2 | 789.15 | 100 |
1.9 | 16.19 | 1.50 | 75.70 | 46.7 | 71.8 | 75.1 | 810.56 | 121.42 |
2.1 | 15.81 | 1.43 | 81.74 | 46.0 | 80.5 | 76.6 | 819.41 | 130.26 |
2.3 | 17.44 | 1.61 | 80.63 | 48.7 | 84.7 | 80.2 | 869.19 | 180.04 |
2.5 | 17.89 | 1.54 | 79.00 | 49.3 | 86.3 | 81.9 | 872.48 | 183.33 |
Rj | 2.08 | 0.28 | 10.57 | 3.3 | 16.4 | 7.7 | - | - |
Wj | 5 | 25 | 10 | 20 | 20 | 20 | - | - |
ωj | 2.40 | 89.29 | 0.95 | 6.06 | 1.22 | 2.60 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Gao, Z.; Yang, S.; Tang, W.; Xue, X. Effect of Basicity on Sintering Behavior and Metallurgical Properties of High-Chromium Vanadium-Titanium Magnetite. Metals 2020, 10, 569. https://doi.org/10.3390/met10050569
Zhang L, Gao Z, Yang S, Tang W, Xue X. Effect of Basicity on Sintering Behavior and Metallurgical Properties of High-Chromium Vanadium-Titanium Magnetite. Metals. 2020; 10(5):569. https://doi.org/10.3390/met10050569
Chicago/Turabian StyleZhang, Liheng, Zixian Gao, Songtao Yang, Weidong Tang, and Xiangxin Xue. 2020. "Effect of Basicity on Sintering Behavior and Metallurgical Properties of High-Chromium Vanadium-Titanium Magnetite" Metals 10, no. 5: 569. https://doi.org/10.3390/met10050569
APA StyleZhang, L., Gao, Z., Yang, S., Tang, W., & Xue, X. (2020). Effect of Basicity on Sintering Behavior and Metallurgical Properties of High-Chromium Vanadium-Titanium Magnetite. Metals, 10(5), 569. https://doi.org/10.3390/met10050569