Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F. Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration. Opt. Laser Technol. 2011, 43, 158–172. [Google Scholar] [CrossRef]
- Yao, Q.; Luo, Z.; Li, Y.; Yan, F.; Duan, R. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Mater. Des. 2014, 63, 200–207. [Google Scholar] [CrossRef]
- Cao, L.; Yang, Y.; Jiang, P.; Zhou, Q.; Mi, G.; Gao, Z.; Rong, Y.; Wang, C. Optimization of processing parameters of AISI 316L laser welding influenced by external magnetic field combining RBFNN and GA. Results Phys. 2017, 7, 1329–1338. [Google Scholar] [CrossRef]
- Silva, K.B. Study of TIG Arc Physics and its Implications for Weld Bead Morphology with the Presence of External Longitudinal Magnetic Fields. Available online: https://repositorio.ufsc.br/handle/123456789/202332 (accessed on 5 December 2019).
- Baldan, E.L.; Melado, M.C. Parameter Evaluation in Submerged Arc Welding. Available online: http://mecanica.ufes.br/sites/engenhariamecanica.ufes.br/files/field/anexo/2007-1_marcos_melado_e_ednaldo_baldan.pdf (accessed on 21 August 2007).
- De Almeida, L.F.C.B. Evaluation of the Influence of Mechanical Vibration Application on the Microstructure and Mechanical Characteristics of Stainless Steel Joints Welded by the FCAW Process. Ph.D. Thesis, Universidade de São Paulo, Paulo, Brazil, 11 December 2015; p. 133. [Google Scholar] [CrossRef]
- Cunha, T.V.; Bohórquez, C.E.N. Ultrasound in Arc Welding-A Review of Application Methods and its Effects. Soldag. Insp. 2014, 19, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.; Avilov, V.; Gumenyuk, A.; Rethmeier, M. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields. Int. J. Therm. Sci. 2016, 101, 24–34. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Yan, F.; Duan, R.; Yao, Q. Effect of external magnetic field on resistance spot welds of aluminum alloy. Mater. Des. 2014, 56, 1025–1033. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, Q.X.; Qi, L.; David, S.A. Improving austenitic stainless steel resistance spot weld quality using external magnetic field. Sci. Technol. Weld. Join. 2018, 23, 619–627. [Google Scholar] [CrossRef]
- Li, Y.-B.; Shen, Q.; Lin, Z.Q.; Hu, S.J. Quality improvement in resistance spot weld of advanced high strength steel using external magnetic field. Sci. Technol. Weld. Join. 2011, 16, 465–469. [Google Scholar] [CrossRef]
- Da Fonseca, G.S.; De Oliveira, S.C.; Chaves, J.G.; Leite, P.P.; Da Silva, F.R.F.; Lopes, L.C.R. Study of Martensitic Transformation in 304L Austenitic Stainless Steel after Tensile and Low Cycle Fatigue Tests. J. Mater. Sci. Res. 2019, 9, 22. [Google Scholar] [CrossRef]
- Azevedo, A.G.L.; Ferraresi, V.A.; Farias, J.P. Welding of a Ferritic Stainless Steel with the A-Tig Process. Soldagem Insp. São Paulo 2009, 14, 2–9. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Ma, L.; Cao, Z.; Yang, J.; Yan, Y. Dynamic Behavior of Solder Filling during Ultrasonic Soldering. Weld. J. 2019, 98, 194S–203S. [Google Scholar]
- Rao, T.; Krishna, G.; Kumar, M. Investigation of Microstructure and Mechanical Properties of MIG Welded Mild Steel Plates. Ann. Chim. Sci. Mat. 2019, 43, 257–263. [Google Scholar] [CrossRef]
- Natividad, C.; García, R.; López, V.H.; Contreras, A.; Salazar, M. Metallurgical Characterization of API X65 Steel Joint Welded by MIG Welding Process with Axial Magnetic Field. Mater. Res. 2017, 20, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Jeng, S.-L.; Su, D.-P.; Lee, J.-T.; Huang, J.-Y. Effects of Electromagnetic Stirring on the Cast Austenitic Stainless Steel Weldments by Gas Tungsten Arc Welding. Metals 2018, 8, 630. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, M.D.; Magalhães, P.J.; Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Hernandez-Trujillo, S.L.; López-Morelos, V.H.; García-Hernández, R.; García-Rentería, M.A.; Ruiz, A. Effect of Electromagnetic Field on the Microstructure and Mechanical Properties of the Dissimilar 2205/316L Welded Joint. In Procedings of the 17th International Conference on New Trends in Fatigue and Fracture; Springer: Cham, The Switzerland, 17–20 July 2018; pp. 247–254. [Google Scholar]
- Garcia, R.; Cortes, R.; García, D.L.; López, V.H. Effect of the Perpendicular Electromagnetic Field in the 304 Austenitic Stainless Steel Welding in a Single Pass. Mater. Charact. 2015, 119–127. [Google Scholar] [CrossRef]
- Garcia-Renteria, M.-A.; López-Morelos, V.; González-Sánchez, J.; Hernandez, R.G.; Dzib-Pérez, L.; Lopez, F.F.C. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance. Appl. Surf. Sci. 2017, 396, 1187–1200. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, J.; Cao, H.; Zheng, H.; Huang, Y.; Zhang, G. Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding. J. Manuf. Process. 2017, 26, 399–406. [Google Scholar] [CrossRef]
- Chen, R.; Jiang, P.; Shao, X.; Mi, G.; Wang, C. Effect of static magnetic field on microstructures and mechanical properties of laser-MIG hybrid welding for 304 stainless steel. Int. J. Adv. Manuf. Technol. 2017, 91, 3437–3447. [Google Scholar] [CrossRef]
- Demarque, R.; Dos Santos, E.; Silva, R.; De Castro, J. Evaluation of the effect of the thermal cycle on the characteristics of welded joints through the variation of the heat input of the austhenitic AISI 316L steels by the GMAW process. Sci. Technol. Mater. 2018, 30, 51–59. [Google Scholar] [CrossRef]
- Chelah, N.; Hussin, M.H. Magnetic Field Effectson 4G Positions in Shielded Metal Arc Welding Process. Int. J. Eng. Adv. Technol. 2020, 9, 694–703. [Google Scholar]
- Nunes, C.J.A.; Martins, C.D. Effects of Solubilization Treatment and Thermal Aging on Microstructure Corrosion Resistance of a Welded Joint with AISI 304L Steel. Available online: http://www.cefet-rj.br/attachments/article/2943/Projeto Final 2017_2 Efeitos do Tratamento de Solubilização e Envelhecimento Térmico na Microestrutura e Resistência a Corrosão de Junta Soldada Aço AISI 304L.pdf (accessed on 13 January 2018).
- Arturo, G.R.M.; Hugo, L.M.V.; Rafael, G.H.; Egberto, B.B.; Antonio, G.S.J. Electrochemical Characterization of AISI 2205 Duplex Stainless Steel Welded Joints with Electromagnetic Interaction. Procedia Mater. Sci. 2015, 8, 950–958. [Google Scholar] [CrossRef] [Green Version]
- Dar, Y.A.; Singh, C.; Farooq, Y. Effects of External Magnetic Field on Welding Arc of Shielded Metal Arc Welding. Indian J. Appl. Res. 2011, 4, 200–203. [Google Scholar] [CrossRef]
- Osório, W.R.; Garcia, L.R.; Peixoto, L.C.; Garcia, A. The influence of macrosegregation and variation of dendritic spacing on the corrosion resistance of Al-4.5%Cu alloy. Materia 2008, 13, 542–552. [Google Scholar] [CrossRef]
- Senapati, A.; Mohanty, S.B. Effects of External Magnetic Field on Mechanical properties of a welded M.S metal through Metal Shield Arc Welding. Int. J. Eng. Trends Technol. 2014, 10, 297–303. [Google Scholar] [CrossRef]
- Sant’anna, A.M.S.; Bastos, I.N.; Fonseca, M.P.C. Effect of Hydrogenation on the Mechanical Properties of Steel API 5L X-65. Proceeding of the Brazilian Congress on Manufacturing Engineering, Associação Brasileira de Engenharia e Ciências Mecânicas, Ribeirão Preto, Brazil, 20–24 May 2013. [Google Scholar]
- Cardoso, S.P.; Dos Reis, F.A.; Massapust, F.C.; Costa, J.D.F.; Tebaldi, L.S.; De Araújo, L.F.L.; Da Silva, M.V.A.; De Oliveira, T.S.; Gomes, J.A.D.C.P.; Hollauer, E. Avaliação de indicadores de uso diverso como inibidores de corrosão. Química Nova 2005, 28, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Curiel, F.; Garcia, R.; Lopez, F.F.C.; González-Sánchez, J. Effect of magnetic field applied during gas metal arc welding on the resistance to localised corrosion of the heat affected zone in AISI 304 stainless steel. Corros. Sci. 2011, 53, 2393–2399. [Google Scholar] [CrossRef]
- Pedrini, L.T.; Maziero, R.; Gontijo, L.C.; Altoé, J.A.F. Corrosion resistance analysis of AISI 304L. Proceeding of the ABM Proceedings, ABM WEEK, Rio de Janeiro, Brazil, 17–21 August 2015. [Google Scholar]
AISI 304L | C | Mn | Si | P | S | Cr | Ni | Mo | Cu | N |
---|---|---|---|---|---|---|---|---|---|---|
% weight | 0.0166 | 1.17 | 0.486 | 0.0431 | 0.0029 | 18.42 | 8.08 | 0.0031 | 0.0312 | 0.0623 |
% mol | 0.0013 | 0.021 | 0.017 | 0.0014 | 0.00009 | 0.036 | 0.139 | 0.00003 | 0.031 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queiroz, A.V.d.; Fernandes, M.T.; Silva, L.; Demarque, R.; Xavier, C.R.; Castro, J.A.d. Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding. Metals 2020, 10, 714. https://doi.org/10.3390/met10060714
Queiroz AVd, Fernandes MT, Silva L, Demarque R, Xavier CR, Castro JAd. Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding. Metals. 2020; 10(6):714. https://doi.org/10.3390/met10060714
Chicago/Turabian StyleQueiroz, Anderson Vergílio de, Márcio Teodoro Fernandes, Leonardo Silva, Rudineli Demarque, Carlos Roberto Xavier, and José Adilson de Castro. 2020. "Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding" Metals 10, no. 6: 714. https://doi.org/10.3390/met10060714
APA StyleQueiroz, A. V. d., Fernandes, M. T., Silva, L., Demarque, R., Xavier, C. R., & Castro, J. A. d. (2020). Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding. Metals, 10(6), 714. https://doi.org/10.3390/met10060714