Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Single-Path Line Scanning
3.2. Multi-Path Scanning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nunomura, Y.; Kaneno, Y.; Tsuda, H.; Takasugi, T. Phase relation and microstructure in multi-phase intermetallic alloys based on Ni3Al-Ni3Ti-Ni3V pseudo-ternary alloy system. Intermetallics 2004, 12, 389–399. [Google Scholar] [CrossRef]
- Shibuya, S.; Kaneno, Y.; Yoshida, M.; Takasugi, T. Dual multi-phase intermetallic alloys composed of geometrically close packed Ni3X (X: Al, Ti and V) type structures-II. Mechanical properties. Acta Mater. 2006, 54, 861–870. [Google Scholar] [CrossRef]
- Kawahara, K.; Kaneno, Y.; Kakitsuji, A.; Takasugi, T. Microstructural factors affecting hardness property of dual two-phase intermetallic alloys based on Ni3Al-Ni3V pseudo-binary alloy system. Intermetallics 2009, 17, 938–944. [Google Scholar] [CrossRef]
- Ioroi, K.; Kaneno, Y.; Semboshi, S.; Takasugi, T. Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni3Al-Ni3V intermetallic alloys. Materialia 2019, 5, 100173. [Google Scholar] [CrossRef]
- Kato, H.; Semboshi, S.; Kaneno, Y.; Takasugi, T. Effects of Iron Addition on the Microstructures and Mechanical Properties of Two-Phase Ni3Al-Ni3V Intermetallic Alloys. Metall. Mater. Trans. A 2020, 51, 2469–2479. [Google Scholar] [CrossRef]
- Edatsugi, D.; Kaneno, Y.; Semboshi, S.; Takasugi, T. Fine precipitation in channel region of two-phase Ni3Al and Ni3V intermetallic alloys containing Mo and W. Metall. Mater. Trans. A 2016, 47A, 998–1008. [Google Scholar] [CrossRef]
- Liu, C.T. Intergranular fracture and boron effects in Ni3Al and other intermetallics—Introductory paper. Scr. Metall. Mater. 1991, 25, 1231–1236. [Google Scholar] [CrossRef]
- Lin, H.; Pope, D.P. The influence of grain boundary geometry on intergranular crack propagation in Ni3Al. Acta Metall. Mater. 1993, 41, 553–562. [Google Scholar] [CrossRef]
- Xie, G.; Wang, L.; Zhang, J.; Lou, L.H. Orientational dependence of recrystallization in an Ni-base single-crystal superalloy. Scr. Metall. 2012, 66, 378–381. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Yu, J.; Zhou, Z.; Wang, B.; Tu, T.; Ren, X.; Deng, K.; Ren, Z. Microstructure and mechanical properties of Ni-based superalloy K418 produced by the continuous unidirectional solidification process. J. Mater. Eng. Perform. 2019, 28, 6483–6491. [Google Scholar] [CrossRef]
- Gaumann, M.; Bezencon, C.; Canalis, P.; Kurz, W. Single-crystal laser deposition of superalloys: Processing-microstructure maps. Acta Mater. 2001, 49, 1051–1062. [Google Scholar] [CrossRef]
- Haranzhevskiya, E.V.; Danilovc, D.A.; Krivilyova, M.D.; Galenkob, P.K. Structure and mechanical properties of structural steel in laser resolidification processing. Mater. Sci. Eng. A 2004, 375–377, 502–506. [Google Scholar] [CrossRef]
- Weiping, L.; DuPont, J.N. Direct Laser Deposition of a Single-Crystal Ni3Al-Based IC221W Alloy. Metall. Mater. Trans. A 2005, 36A, 3397–3406. [Google Scholar]
- Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C. Laser beam weld-metal microstructure in a yttrium modified directionally solidified Ni3Al-base alloy. Intermetallics 2007, 15, 1504–1510. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Godec, M.; Podgornik, B.; Nolan, D. Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating. Sci. Rep. 2017, 7, 16097. [Google Scholar] [CrossRef]
- Seede, R.; Shoukr, D.; Zhang, B.; Whitt, A.; Gibbons, S.; Flater, P.; Elwany, A.; Arroyave, R.; Karaman, I. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Mater. 2020, 186, 199–214. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, H.; Kini, A.; Kurnsteiner, P.; Raabe, D.; Jagle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, H.; Liu, W.; Zhu, X.; He, J. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr. Mater. 2005, 53, 159–164. [Google Scholar] [CrossRef]
- Lin, X.; Yue, T.M.; Yang, H.O.; Huang, W.D. Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Mater. 2006, 54, 1901–1915. [Google Scholar] [CrossRef]
- Lapin, J.; Marecek, C. Effect of growth rate on microstructure and mechanical properties of directionally solidified multiphase intermetallic Ni-Al-Cr-Ta-Mo-Zr. Intermetallics 2006, 14, 1339–1344. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.M. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater. Sci. Eng. A 2010, 527, 4823–4829. [Google Scholar] [CrossRef]
- Cia, S.; Lianga, J.; Li, J.; Zhoua, Y.; Sun, Y. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming. J. Mater. Sci. Technol. 2020, 45, 23–34. [Google Scholar] [CrossRef]
- Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. Acta Mater. 2009, 57, 5292–5302. [Google Scholar] [CrossRef]
- Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A. Laser cladding of aerospace materials. J. Mater. Proc. Technol. 2002, 122, 63–68. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sato, K.; Hayashi, E.; Osaka, T.; Konno, T.J.; Kaneno, Y.; Takasugi, T. Alloying effects on the phase equilibria among Ni(A1), Ni3Al(L12) and Ni3V(D022) phases. Intermetallics 2012, 23, 68–75. [Google Scholar] [CrossRef]
- Aoki, K. Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron. Mater. Trans. JIM 1990, 31, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.T.; White, C.L.; Horton, J.A. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 1985, 33, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.A.; Subramanian, S.; Batson, P.E.; Silcox, J.; Sass, S.L. Structure, chemistry and bonding at grain boundaries in Ni3Al—I. The role of boron in ductilizing grain boundaries. Acta Mater. 1996, 44, 1637–1645. [Google Scholar] [CrossRef]
- Kim, H.K.; Earthman, J.C.; Lavernia, E.J. Primary dendrite arm spacings and tip radii in directionally solidified Ni3Al. Mater. Sci. Eng. A 1992, 152, 240–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Li, J. Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy. Metall. Mater. Trans. A 2013, 44A, 1641–1644. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semboshi, S.; Nakamura, H.; Kawahito, Y.; Kaneno, Y.; Takasugi, T. Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation. Metals 2020, 10, 1011. https://doi.org/10.3390/met10081011
Semboshi S, Nakamura H, Kawahito Y, Kaneno Y, Takasugi T. Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation. Metals. 2020; 10(8):1011. https://doi.org/10.3390/met10081011
Chicago/Turabian StyleSemboshi, Satoshi, Hiroshi Nakamura, Yosuke Kawahito, Yasuyuki Kaneno, and Takayuki Takasugi. 2020. "Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation" Metals 10, no. 8: 1011. https://doi.org/10.3390/met10081011
APA StyleSemboshi, S., Nakamura, H., Kawahito, Y., Kaneno, Y., & Takasugi, T. (2020). Unidirectional Crystal Orientation of Dual-Phase Ni3Al-Based Alloy via Laser Irradiation. Metals, 10(8), 1011. https://doi.org/10.3390/met10081011