The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism
Abstract
:1. Introduction
2. General Properties
2.1. Structural Properties
2.2. Elastic and Magnetic Properties
3. Precipitation Mechanism
3.1. Equilibrium Thermodynamics
3.2. Formation of κ-Carbide in Austenite Matrix
3.3. Formation of κ-Carbide in Ferrite Matrix
4. Effect of κ-Carbide on Mechanical Properties
4.1. Austenite-Based Fe-Mn-Al-C Steels
4.2. Ferrite-Based Fe-Mn-Al-C Steels
4.3. Duplex-Phase Fe-Mn-Al-C Steels
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Rana, R.; Haldar, A.; Ray, R.K. Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Kimura, Y.; Handa, K.; Hayashi, K.; Mishima, Y. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics 2004, 12, 607–617. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Ding, H.; Li, H.Y.; Huang, M.L.; Cao, F.R. Microstructural evolution and strain hardening behavior during plastic deformation of Fe–12Mn–8Al–0.8C steel. Mater. Sci. Eng. A 2013, 584, 150–155. [Google Scholar] [CrossRef]
- Raabe, D.; Springer, H.; Gutierrez-Urrutia, I.; Roters, F.; Bausch, M.; Seol, J.B.; Koyama, M.; Choi, P.P.; Tsuzaki, K. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. JOM 2014, 66, 1845–1856. [Google Scholar] [CrossRef]
- Kalashnikov, I.; Shalkevich, A.; Acselrad, O.; Pereira, L.C. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system. J. Mater. Eng. Perform. 2000, 9, 597–602. [Google Scholar] [CrossRef]
- Howell, R.A.; Aken, D.C. A literature review of age hardening Fe-Mn-Al-C alloys. Iron Steel Technol. 2009, 6, 193–212. [Google Scholar]
- Sutou, Y.; Kamiya, N.; Umino, R.; Ohnuma, I.; Ishida, K. High-strength Fe–20Mn–Al–C-based Alloys with Low Density. ISIJ Int. 2010, 50, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Suh, D.-W.; Kim, N.J. Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 2013, 14, 014205. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Mater. Sci. Technol. 2014, 30, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Han, D.; Zhang, J.; Cai, Z.; Wu, Z.; Cai, M. Tensile deformation behavior analysis of low density Fe–18Mn–10Al–xC steels. Mater. Sci. Eng. A 2016, 652, 69–76. [Google Scholar] [CrossRef]
- Frommeyer, G.; Drewes, E.J.; Engl, B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. De Metall. Cah. D Inf. Tech. 2000, 97, 1245–1253. [Google Scholar] [CrossRef]
- Chin, K.; Lee, H.; Kwak, J.; Kang, J.; Lee, B. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels. J. Alloy. Compd. 2010, 505, 217–223. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Frommeyer, G. The ternary iron aluminum carbides. J. Alloy. Compd. 2011, 509, 2729–2733. [Google Scholar] [CrossRef]
- Lu, W.J.; Zhang, X.F.; Qin, R.S. Structure and properties of κ-carbides in duplex lightweight steels. Ironmak. Steelmak. 2015, 42, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Grässel, O.; Frommeyer, G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater. Sci. Technol. 1998, 14, 1213–1217. [Google Scholar] [CrossRef]
- Frommeyer, G.; Jiménez, J.A. Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C steel. Metall. Mater. Trans. A 2005, 36, 295–300. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, J.-S.; Lee, D.-L. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Met. Mater. Int. 2010, 16, 871–876. [Google Scholar] [CrossRef]
- Liu, D.; Cai, M.; Ding, H.; Han, D. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel. Mater. Sci. Eng. A 2018, 715, 25–32. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, X.C.; Wang, G.D.; Yi, H.L. The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scr. Mater. 2016, 124, 42–46. [Google Scholar] [CrossRef]
- Connetable, D.; Maugis, P. First principle calculations of the κ-Fe3AlC perovskite and iron–aluminium intermetallics. Intermetallics 2008, 16, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.Y.; Kim, H. Ab initiocalculations on the effect of Mn substitution in theκ-carbide Fe3AlC. J. Korean Phys. Soc. 2013, 62, 481–485. [Google Scholar] [CrossRef]
- Palm, M.; Inden, G. Experimental determination of phase equilibria in the Fe-Al-C system. Intermetallics 1995, 3, 443–454. [Google Scholar] [CrossRef]
- Andryushchenko, V.A.; Gavrilyuk, V.G.; Nadutov, V.M. Atomic and magnetic ordering in the κ-phase of Fe-Al-C alloys. Phys. Met. Metallogr. 1985, 60, 50–55. [Google Scholar]
- Yang, J.; La, P.; Liu, W.; Hao, Y. Microstructure and properties of Fe3Al–Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting. Mater. Sci. Eng. A 2004, 382, 8–14. [Google Scholar] [CrossRef]
- Huetter, L.J.; Stadelmaier, H.H. Ternary carbides of transition metals with aluminum and magnesium. Acta Metall. 1958, 6, 367–370. [Google Scholar] [CrossRef]
- Choo, W.K.; Han, K.H. Phase constitution and lattice parameter relationships in rapidly solidified (Fe0.65Mn0.35)0.83 Al0.17-xC and Fe3Al-xC pseudo-binary alloys. Metall. Mater. Trans. A 1985, 16, 5–10. [Google Scholar] [CrossRef]
- Hosoda, H.; Miyazaki, S.; Mishima, Y. Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. J. Phase Equilibria 2001, 22, 394–399. [Google Scholar] [CrossRef]
- Dierkes, H.; Leusen, J.V.; Bogdanovski, D.; Dronskowski, R. Synthesis, Crystal Structure, Magnetic Properties, and Stability of the Manganese-Rich “Mn3AlC” κ Phase. Inorg. Chem. 2017, 56, 1045–1048. [Google Scholar] [CrossRef]
- Kellou, A.; Grosdidier, T.; Raulot, J.M.; Aourag, H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi 2008, 245, 750–755. [Google Scholar] [CrossRef]
- Briggs, I.; Russell, G.J.; Clegg, A.G. Some structural and magnetic properties of Fe-Al-C and Fe-Mn-Al-C alloys. J. Mater. Sci. 1985, 20, 668–673. [Google Scholar] [CrossRef]
- Jiyoung, N.; Hanchul, K. Density Functional Theory Calculations on kappa-carbides, (Fe,Mn)3AlC. J. Korean Phys. Soc. 2011, 58, 285–290. [Google Scholar]
- Meyer, L.; Bühler, H.E. Aufbau von Diffusionsschichten zwischen unlegiertem Stahl und Aluminium (Construction of diffusion-layers of unalloyed steel and aluminium). Aluminium 1967, 43, 733–738. [Google Scholar]
- Parker, S.F.H.; Grundy, P.J.; Jones, G.A.; Briggs, I.; Clegg, A.G. Microstructure and magnetic properties of the permanent magnet material FeAIC. J. Mater. Sci. 1988, 23, 217–222. [Google Scholar] [CrossRef]
- Reddy, B.V.; Khanna, S.N. Chemically induced oscillatory exchange coupling in chromium oxide clusters. Phys. Rev. Lett. 1999, 83, 3170–3173. [Google Scholar] [CrossRef]
- Reddy, B.V.; Deevi, S.C. Local interactions of carbon in FeAl alloys. Mater. Sci. Eng. A 2002, 329, 395–401. [Google Scholar] [CrossRef]
- Cheng, W. Formation of a New Phase after High-Temperature Annealing and Air Cooling of an Fe-Mn-Al Alloy. Metall. Mater. Trans. A 2005, 36, 1737–1743. [Google Scholar] [CrossRef]
- Cheng, W.; Song, Y.; Lin, Y.; Chen, K.; Pistorius, P.C. On the Eutectoid Reaction in a Quaternary Fe-C-Mn-Al Alloy: Austenite → Ferrite + Kappa-Carbide + M23C6 Carbide. Metall. Mater. Trans. A 2014, 45, 1199–1216. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kang, Y.-B. Development of thermodynamic database for high Mn–high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling. Calphad 2015, 51, 89–103. [Google Scholar] [CrossRef]
- Connetable, D.; Lacaze, J.; Maugis, P.; Sundman, B. A Calphad assessment of Al–C–Fe system with the κ carbide modelled as an ordered form of the fcc phase. Calphad 2008, 32, 361–370. [Google Scholar] [CrossRef]
- Ishida, K.; Ohtani, H.; Satoh, N.; Kainuma, R.; Nishizawa, T. Phase Equilibria in Fe-Mn-Al-C Alloys. ISIJ Int. 1990, 30, 680–686. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kang, Y.-B. Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase. J. Phase Equilibria Diffus. 2015, 36, 453–470. [Google Scholar] [CrossRef]
- Kumar, K.C.H.; Raghavan, V. A Thermodynamic Analysis of the Al-C-Fe System. J. Phase Equilibria 1991, 12, 275–286. [Google Scholar] [CrossRef]
- Raghavan, V. Al-C-Fe (aluminum-carbon-iron). Cheminform 1993, 34, 615–617. [Google Scholar]
- Raghavan, V. Al-C-Fe (Aluminum-Carbon-Iron). J. Phase Equilibria 2002, 23, 508–510. [Google Scholar] [CrossRef]
- Raghavan, V. Al-C-Fe (Aluminiun-Carbon-Iron). J. Phase Equilibria Diffus. 2007, 28, 267–268. [Google Scholar] [CrossRef]
- Phan, A.T.; Paek, M.K.; Kang, Y.B. Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization. Acta Materialia 2014, 79, 1–15. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.; Jang, J.H.; Lee, T.; Lee, C.; Hong, H.; Suh, D.; Kim, S.; Han, H.N.; Lee, B.H. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition. Scr. Mater. 2017, 127, 97–101. [Google Scholar] [CrossRef]
- Bentley, A.P. Ordering in Fe-Mn-Al-C austenite. J. Mater. Sci. Lett. 1986, 5, 907–908. [Google Scholar] [CrossRef]
- Chu, S.M.; Kao, P.W.; Gan, D. Growth kinetics of κ-carbide particles in Fe-30Mn-10Al-1C-1Si alloy. Scr. Metall. Et Mater. 1992, 26, 1067–1070. [Google Scholar] [CrossRef]
- Yang, L.; Huang, F.; Guo, Z.; Rong, Y.; Chen, N. Investigation on the formation mechanism of ordered carbide (FeMn)3AlC in the Al added twinning-induced plasticity steels. J. Shanghai Jiaotong Univ. 2016, 21, 406–410. [Google Scholar] [CrossRef]
- Lu, K.; Lu, L.; Suresh, S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science 2009, 324, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, L.N.; Van Aken, D.C.; Medvedeva, J.; Isheim, D.; Medvedeva, N.; Song, K. An Atom Probe Study of κ-carbide Precipitation in Austenitic Lightweight Steel and the Effect of Phosphorus. Metall. Mater. Trans. A 2017, 48, 5500–5515. [Google Scholar] [CrossRef]
- Chang, K.M.; Chao, C.G.; Liu, T.F. Excellent combination of strength and ductility in an Fe–9Al–28Mn–1.8C alloy. Scr. Mater. 2010, 63, 162–165. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.-H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.-T.; Kim, N.J. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr. Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Chao, C.Y.; Hwang, C.N.; Liu, T.F. Grain boundary precipitation in an Fe-7.8Al-31.7Mn-0.54C alloy. Scr. Metall. Et Mater. 1993, 28, 109–114. [Google Scholar] [CrossRef]
- Hwang, C.N.; Chao, C.Y.; Liu, T.F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy. Scr. Metall. Et Mater. 1993, 28, 263–268. [Google Scholar] [CrossRef]
- Bartlett, L.N. On the Effect of Silicon and Phosphorus During the Precipitation of Kappa-Carbide in Fe-Mn-Al-C Alloys. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2013. [Google Scholar]
- Seol, J.-B.; Raabe, D.; Choi, P.; Park, H.-S.; Kwak, J.H.; Park, C.-G. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr. Mater. 2013, 68, 348–353. [Google Scholar] [CrossRef]
- Heo, Y.-U.; Song, Y.-Y.; Park, S.-J.; Bhadeshia, H.K.D.H.; Suh, D.-W. Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metall. Mater. Trans. A 2012, 43, 1731–1735. [Google Scholar] [CrossRef]
- Sato, K.; Tagawa, K.; Inoue, Y. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metall. Trans. A 1990, 21, 5–11. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, C.-Y.; Park, I.-J.; Lee, Y.-K. Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J. Alloy. Compd. 2013, 574, 299–304. [Google Scholar] [CrossRef]
- Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Haase, C.; Zehnder, C.; Ingendahl, T.; Bikar, A.; Tang, F.; Hallstedt, B.; Hu, W.; Bleck, W.; Molodov, D.A. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater. 2017, 122, 332–343. [Google Scholar] [CrossRef]
- Kim, C.W.; Terner, M.; Lee, J.H.; Hong, H.U.; Moon, J.; Park, S.J.; Jang, J.H.; Lee, C.H.; Lee, B.H.; Lee, Y.J. Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels. J. Alloy. Compd. 2019, 775, 554–564. [Google Scholar] [CrossRef]
- Ding, H.; Li, H.; Misra, R.D.K.; Wu, Z.; Cai, M. Strengthening Mechanisms in Low Density Fe–26Mn–xAl–1C Steels. Steel Res. Int. 2018, 89, 1700381. [Google Scholar] [CrossRef]
- Bartlett, L.; Van Aken, D. High Manganese and Aluminum Steels for the Military and Transportation Industry. JOM 2014, 66, 1770–1784. [Google Scholar] [CrossRef]
- Ishii, H.; Ohkubo, K.; Miura, S.; Mohri, T. Mechanical Properties of α+κ Two-phase Lamellar Structure in Fe-Mn-Al-C Alloy. Mater. Trans. 2003, 44, 1679–1681. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.L.; Hou, Z.Y.; Xu, Y.B.; Wu, D.; Wang, G.D. Acceleration of spheroidization in eutectoid steels by the addition of aluminum. Scr. Mater. 2012, 67, 645–648. [Google Scholar] [CrossRef]
- Embury, J.D.; Fisher, R.M. The structure and properties of drawn pearlite. Acta Metall. 1966, 14, 147–159. [Google Scholar] [CrossRef]
- Yi, H.L.; Chen, P.; Hou, Z.Y.; Hong, N.; Cai, H.L.; Xu, Y.B.; Wu, D.; Wang, G.D. A novel design: Partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scr. Mater. 2013, 68, 370–374. [Google Scholar]
- Chen, P.; Wang, G.D.; Xiong, X.C.; Yi, H.L. Abnormal expansion due to pearlite-to-austenite transformation in high aluminium-added steels. Mater. Sci. Technol. 2016, 32, 1678–1682. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lee, H.; Han, S.Y.; Seo, C.-H.; Choi, K.; Lee, S.; Kim, N.J.; Kwak, J.-H.; Chin, K.-G. Correlation of Microstructure and Cracking Phenomenon Occurring during Hot Rolling of Lightweight Steel Plates. Metall. Mater. Trans. A 2009, 41, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Han, S.Y.; Shin, S.Y.; Lee, S.; Kim, N.J.; Kwak, J.-H.; Chin, K.-G. Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates. Metall. Mater. Trans. A 2010, 42, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Han, S.Y.; Shin, S.Y.; Lee, H.-J.; Lee, B.-J.; Lee, S.; Kim, N.J.; Kwak, J.-H. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels. Metall. Mater. Trans. A 2011, 43, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kwon, Y.; Sohn, S.S.; Koo, M.; Kim, N.J.; Lee, B.-J.; Lee, S. Improvement of tensile properties in (austenite+ferrite+κ-carbide) triplex hot-rolled lightweight steels. Mater. Sci. Eng. A 2018, 730, 177–186. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, X.; Yi, H. The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals 2020, 10, 1021. https://doi.org/10.3390/met10081021
Chen P, Li X, Yi H. The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals. 2020; 10(8):1021. https://doi.org/10.3390/met10081021
Chicago/Turabian StyleChen, Peng, Xiaowu Li, and Hongliang Yi. 2020. "The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism" Metals 10, no. 8: 1021. https://doi.org/10.3390/met10081021
APA StyleChen, P., Li, X., & Yi, H. (2020). The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals, 10(8), 1021. https://doi.org/10.3390/met10081021