Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Material and Heat Treatments
2.2. Metallography
2.3. Tensile, Bending and Hardness Tests
3. Thermodynamic and Kinetic Calculations
4. Constitutive Model
5. Results
6. Discussion
6.1. Microstructure and Mechanical Properties
6.2. Other Parameters
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kot, R.; Morris, J. Symposium on Structure and Properties of Dual-Phase Steels; Metallurgical Society of AIME: Warrendale, PA, USA, 1979. [Google Scholar]
- Kot, R.; Bramfitt, B. Symposium on Fundamentals of Dual-Phase Steels; Metallurgical Society of AIME: Warrendale, PA, USA, 1981. [Google Scholar]
- Rashid, M. Dual-Phase steels. Annu. Rev. Mater. Res. 1981, 11, 245–266. [Google Scholar] [CrossRef]
- Furukawa, T.; Morikawa, H.; Endo, M.; Takechi, H.; Koyama, K.; Akisue, O.; Yamada, T. Process Factors for Cold-rolled Dual-phase Sheet Steels. ISIJ Int. 1981, 21, 812–819. [Google Scholar] [CrossRef]
- Shirasawa, H.; Thomson, J.G. Effect of Hot Band Microstructure on Strength and Ductility of Cold Rolled Dual Phase Steel. Trans. Iron Steel Inst. Jpn. 1987, 27, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Usui, N.; Kobayashi, M.; Hashimoto, S. Effects of Volume Fraction and Stability of TRIP-aided of Retained Austenite on Ductility Dual-phase Steels. ISIJ Int. 1992, 32, 1311–1318. [Google Scholar] [CrossRef]
- Sugimoto, K.; Misu, M.; Kobayashi, M.; Shirasawa, H. Effects of second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a Trip-Aided Dual-Phase Steel Sheet. ISIJ Int. 1993, 33, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.M.; Pereira, M.S. Fatigue life studies in carbon dual-phase steels. Int. J. Fatigue 1996, 18, 529–533. [Google Scholar] [CrossRef]
- Pouranvari, M. Tensile strength and ductility of ferrite-martensite dual phase steels. Metalurgija 2010, 16, 187–194. [Google Scholar]
- Hasegawa, K.; Kawamura, K.; Urabe, T.; Hosoya, Y. Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets. ISIJ Int. 2004, 44, 603–609. [Google Scholar] [CrossRef]
- El-Sesy, I.A.; El-Baradie, Z.M. Influence carbon and/or iron carbide on the structure and properties of dual-phase steels. Mater. Lett. 2002, 57, 580–585. [Google Scholar] [CrossRef]
- Tasan, C.C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M.; et al. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design. Annu. Rev. Mater. Res. 2015, 45, 391–431. [Google Scholar] [CrossRef]
- Korzekwa, D.; Matlock, D.K.; Krauss, G. Dislocation Substructure as a Function of Strain in a Dual-Phase Steel. Metall. Trans. A 1984, 15, 1221–1228. [Google Scholar] [CrossRef]
- Shen, H.; Lei, T.; Liu, J. Microscopic deformation behaviour of martensitic ferritic dual-phase steels. Mater. Sci. Technol. 1986, 2, 28–33. [Google Scholar] [CrossRef]
- Kang, J.; Bacroix, B.; Reglé, H.; Oh, K.; Lee, H.C. Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel. Acta Mater. 2007, 55, 4935–4946. [Google Scholar] [CrossRef]
- Ghadbeigi, H.; Pinna, C.; Celotto, S.; Yates, J. Local plastic strain evolution in a high strength dual-phase steel. Mater. Sci. Eng. A 2010, 527, 5026–5032. [Google Scholar] [CrossRef]
- Maire, E.; Bouaziz, O.; Di Michiel, M.; Verdu, C. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 2008, 56, 4954–4964. [Google Scholar] [CrossRef]
- Jiang, Z.; Guan, Z.; Lian, J. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater. Sci. Eng. A 1995, 190, 55–64. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, B.; Lai, Q.; Chen, X.; Cao, Y.; Liu, M.; Zhou, H. Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel. Materials (Basel) 2018, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Koyama, T. Image-based calculation of stress-strain curve of the two-phase microstructure on the basis of the modified secant method. ISIJ Int. 2012, 52, 723–728. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, Z.; Wu, H.; Peng, C.; Sun, B.; Guo, B.; Liang, J.; Tang, D. Mechanical behavior of two ferrite-martensite dual-phase steels over a broad range of strain rates. Metals (Basel) 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Tomota, Y.; Tamura, I. Mechanical Behavior of Steels Consisting of Two Ductile Phases. ISIJ Int. 1982, 22, 665–677. [Google Scholar] [CrossRef]
- Lian, J.; Jiang, Z.; Liu, J. Theoretical model for the tensile work hardening behaviour of dual-phase steel. Mater. Sci. Eng. A 1991, 147, 55–65. [Google Scholar] [CrossRef]
- Al-Abbasi, F.M.; Nemes, J.A. Characterizing DP-steels using micromechanical modeling of cells. Comput. Mater. Sci. 2007, 39, 402–415. [Google Scholar] [CrossRef]
- Ren, C.; Dan, W.; Xu, Y.; Zhang, W. Effects of heterogeneous microstructures on the strain hardening behaviors of ferrite-martensite dual phase steel. Metals (Basel). 2018, 8, 824. [Google Scholar] [CrossRef] [Green Version]
- Liedl, U.; Traint, S.; Werner, E.A. An unexpected feature of the stress-strain diagram of dual-phase steel. Comput. Mater. Sci. 2002, 25, 122–128. [Google Scholar] [CrossRef]
- Evin, E.; Kepič, J.; Buriková, K.; Tomáš, M. The prediction of the mechanical properties for dual-phase high strength steel grades based on microstructure characteristics. Metals (Basel) 2018, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Dan, W.; Ren, C.; Huang, T.; Zhang, W. Study of the mechanical behavior of dual-phase steel based on crystal plasticity modeling considering strain partitioning. Metals (Basel) 2018, 8, 782. [Google Scholar] [CrossRef] [Green Version]
- Celentano, D.J.; Cabezas, E.E.; García, C.M.; Monsalve, A.E. Characterization of the mechanical behaviour of materials in the tensile test: Experiments and simulation. Model. Simul. Mater. Sci. Eng. 2004, 12. [Google Scholar] [CrossRef]
- García, C.; Celentano, D.; Ponthot, J.P. Caracterización del comportamiento mecánico de acero para embutición profunda. In Proceedings of the SAM-CONAMET, Bariloche, Argentina, 17–21 November 2003. [Google Scholar]
- García, C.; Celentano, D.; Flores, F.; Ponthot, J.P. Numerical modelling and experimental validation of steel deep drawing processes: Part II: Applications. J. Mater. Process. Technol. 2006, 172, 461–471. [Google Scholar] [CrossRef]
- García, C.; Celentano, D.; Flores, F.; Ponthot, J.P.; Oliva, O. Numerical modelling and experimental validation of steel deep drawing processes: Part I. Material characterization. J. Mater. Process. Technol. 2006, 172, 451–460. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Tabor, D. A simple theory of static and dynamic hardness. Proc. R. Soc. London A Math. Phys. Eng. Sci. 1948, A 192, 247–274. [Google Scholar] [CrossRef]
- Tabor, D. The Hardness of Metals; Clarendon Press: Oxford, UK, 1951. [Google Scholar]
- Krauss, G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A 1999, 273–275, 40–57. [Google Scholar] [CrossRef]
- Takakuwa, O.; Kawaragi, Y.; Soyama, H. Estimation of the Yield Stress of Stainless Steel from the Vickers Hardness Taking Account of the Residual Stress. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 262–268. [Google Scholar] [CrossRef] [Green Version]
Steels | C | Si | Mn | P | S |
---|---|---|---|---|---|
ULC-Ferrite | 0.070 | 0.010 | 0.260 | 0.016 | 0.010 |
MC-Martensite | 0.440 | 0.160 | 0.750 | 0.020 | 0.030 |
DP0 | 0.180 | 0.130 | 0.220 | 0.018 | 0.010 |
DP1 | 0.048 | 0.023 | 0.417 | 0.027 | 0.0087 |
DP2 | 0.172 | 0.0094 | 0.395 | 0.022 | 0.0090 |
Steels | HT, (°C) | Ht, (s) | Cooling |
---|---|---|---|
ULC-Ferrite | 720 | 600 | Furnace |
MC-Martensite | 925 | 180 | Quench |
DP0 | 785 | 1800 | Quench |
DP1 | 810 | 300 | Quench |
DP2 | 800 | 900 | Quench |
Steels | A1, (°C) | A3, (°C) | Martensite Volume Percent |
---|---|---|---|
ULC-Ferrite | 718 | 871 | 0 |
MC-Martensite | 712 | 768 | 100 |
DP0 | 722 | 842 | 40 |
DP1 | 722 | 867 | 37 |
DP2 | 722 | 826 | 67 |
Steels | YS, MPa | UTS, MPa | YS/UTS | Elongation Fracture, (%) | K, MPa | n | %m/%f |
---|---|---|---|---|---|---|---|
ULC-Ferrite | 308 | 369 | 0.83 | 30 | 608 | 0.18 | |
MC-Martensite | 1570 | 2426 | 0.65 | - | - | - | |
DP1 (*) | 488 | 688 | 0.70 | 12.4 | 0.59 | ||
DP2 (*) | 479 | 932 | 0.51 | 7.8 | 2.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, P.; Muñoz, F.; Celentano, D.; Artigas, A.; Castro Cerda, F.M.; Ponthot, J.-P.; Monsalve, A. Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties. Metals 2020, 10, 1031. https://doi.org/10.3390/met10081031
Alvarez P, Muñoz F, Celentano D, Artigas A, Castro Cerda FM, Ponthot J-P, Monsalve A. Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties. Metals. 2020; 10(8):1031. https://doi.org/10.3390/met10081031
Chicago/Turabian StyleAlvarez, Paulina, Francisco Muñoz, Diego Celentano, Alfredo Artigas, Felipe M. Castro Cerda, Jean-Philippe Ponthot, and Alberto Monsalve. 2020. "Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties" Metals 10, no. 8: 1031. https://doi.org/10.3390/met10081031
APA StyleAlvarez, P., Muñoz, F., Celentano, D., Artigas, A., Castro Cerda, F. M., Ponthot, J. -P., & Monsalve, A. (2020). Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties. Metals, 10(8), 1031. https://doi.org/10.3390/met10081031