Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior
Abstract
:1. Introduction
2. Experimental Method
2.1. Ink Fabrication and Characterization
2.2. Scaffolds Fabrication
2.2.1. Direct Ink Writing Process
2.2.2. Postprinting Processes
2.3. Scaffold Characterization
2.3.1. Physicochemical Characterization
2.3.2. Mechanical Characterization
2.4. Synthesis of Fibronectin Recombinant Protein Fragment
2.5. Surface Functionalization
2.6. Cellular Characterization
2.6.1. Cell Culture
2.6.2. Cell Adhesion
2.6.3. Cell Proliferation
2.6.4. Cell Differentiation
2.6.5. Cell Mineralization
2.7. Statistical Analysis
3. Results and Discussion
3.1. Titanium Powder Characterization
3.2. Ink Characterization
3.3. Optimization of Binder Removal
3.4. Scaffolds Characterization
3.5. Mechanical Characterization
3.6. In Vitro Cell Response
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Liu, X.; Yeung, K.W.K.; Liu, C.; Yang, X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 2014, 80, 1–36. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Okulov, I.V.; Volegov, A.S.; Attar, H.; Bönisch, M.; Calin, M.; Eckert, J. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2016, 65, 866–871. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Peña, J.; Gil, F.J.; Manero, J.M. Low modulus Ti-Nb-Hf alloy for biomedical applications. Mater. Sci. Eng. C. 2014, 42, 691–695. [Google Scholar] [CrossRef]
- Dunand, D.C. Processing of Titanium Foams. Adv. Eng. Mater. 2004, 6, 369–376. [Google Scholar] [CrossRef]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully Porous 3D Printed Titanium Femoral Stem to Reduce Stress-Shielding Following Total Hip Arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, Y.; Zhu, Y.; Lin, Z.; Chen, L.; Zhang, Y.; Xia, H.; Mao, C. 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- McGilvray, K.C.; Easley, J.; Seim, H.B.; Regan, D.; Berven, S.H.; Hsu, W.K.; Mroz, T.E.; Puttlitz, C.M. Bony ingrowth potential of 3D-printed porous titanium alloy: A direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018, 18, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Rupérez, E.; Manero, J.M.; Riccardi, K.; Li, Y.; Aparicio, C.; Gil, F.J. Development of tantalum scaffold for orthopedic applications produced by space-holder method. Mater. Des. 2015, 83, 112–119. [Google Scholar]
- Wang, X.; Su, X.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef]
- Debroy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Kamariah, M.S.I.N.; Muhamad, N.; Ghani, S.A.C.; Ahmad, F.; Mohamed, Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder. Technol. 2018, 327, 128–151. [Google Scholar] [CrossRef]
- Osakada, K.; Shiomi, M. Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tools. Manuf. 2006, 46, 1188–1193. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef]
- Chi, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015, 9, 1–14. [Google Scholar]
- Sidambe, A.T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting. Chinese J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Duda, T.; Venkat Raghavan, L. 3D Metal Printing Technology. IFAC-PapersOnLine. 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Chen, Y.; Han, P.; Vandi, L.-J.; Dehghan-Manshadi, A.; Humphry, J.; Kent, D.; Stefani, I.; Lee, P.; Heitzmann, M.; Cooper-White, J.; et al. A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2019, 95, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Tare, R.S.; Yang, L.Y.; Williams, D.F.; Ou, K.L.; Oreffo, R.O. Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration. Biomaterials 2016, 83, 363–382. [Google Scholar] [CrossRef]
- Jiang, P.; Ji, Z.; Zhang, X.; Liu, Z.; Wang, X. Recent advances in direct ink writing of electronic components and functional devices. Prog. Addit. Manuf. 2018, 3, 65–86. [Google Scholar] [CrossRef]
- Jakus, A.E.; Taylor, S.L.; Geisendorfer, N.R.; Dunand, D.C.; Shah, R.N. Metallic Architectures from 3D-Printed Powder-Based Liquid Inks. Adv. Funct. Mater. 2015, 25, 6985–6995. [Google Scholar] [CrossRef]
- Li, J.P.; De Wijn, J.R.; Van Blitterswijk, C.A.; De Groot, K. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants. J. Biomed. Mater. Res. A 2010, 92, 33–42. [Google Scholar] [CrossRef]
- Ping, J.; De Wijn, J.R.; Van Blitterswijk, C.A.; De Groot, V. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials 2006, 27, 1223–1235. [Google Scholar]
- Sajid, M.; Akash, H.; Rehman, K. Recent progress in biomedical applications of Pluronic (F127): Pharmaceutical perspectives. J. Control. Release 2015, 209, 120–138. [Google Scholar]
- Raymond, S.; Maazouz, Y.; Montufar, E.B.; Perez, R.A.; González, B.; Konka, J.; Kaiser, J.; Ginebra, M.P. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks. Acta Biomater. 2018, 75, 451–462. [Google Scholar] [CrossRef]
- Nan, B.; Galindo-Rosales, F.J.; Ferreira, J.M.F. 3D Printing vertically: Direct ink writing free-standing pillar arrays. Mater. Today 2020, 35, 16–24. [Google Scholar] [CrossRef]
- Singh, S.P. Fibronectin and Vitronectin Promote Human Fetal Osteoblast Cell Attachment and Proliferation on Nanoporous Titanium Surfaces. J. Biomed. Nanotechnol. 2013, 9, 1092–1097. [Google Scholar]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune responses to implants-a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef]
- Bellis, S.L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 2011, 32, 4205–4210. [Google Scholar] [CrossRef] [Green Version]
- Petrie, T.A.; Reyes, C.D.; Burns, K.L.; García, A.J. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J. Cell. Mol. Med. 2009, 13, 2602–2612. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 2009, 80, 036307. [Google Scholar] [CrossRef] [Green Version]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- ISO 13314:2011. Mechanical Testing of Metals. Ductility Testing-Compression Test for Porous and Cellular Metals; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Herranz-Diez, C.; Mas-Moruno, C.; Neubauer, S.; Kessler, H.; Gil, F.J.; Pegueroles, M.; Manero, J.M.; Guillem-Marti, J. Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments. ACS Appl. Mater. Interfaces 2016, 8, 2517–2525. [Google Scholar] [CrossRef]
- Tuncer, N.; Arslan, G.; Maire, E.; Salvo, L. Investigation of spacer size effect on architecture and mechanical properties of porous titanium. Mater. Sci. Eng. A 2011, 530, 633–642. [Google Scholar] [CrossRef]
- Bhowmick, B.; Mollick, M.; Masud, R.; Mondal, D.; Maity, D.; Bain, M.K.; Bera, N.K.; Rana, D.; Chattopadhyay, S.; Chakraborty, M. Poloxamer and gelatin gel guided polyaniline nanofibers: Synthesis and characterization. Polym. Int. 2014, 63, 1505–1512. [Google Scholar] [CrossRef]
- Gagg, G.; Ghassemieh, E.; Wiria, F.E. Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng. C 2013, 33, 3858–3864. [Google Scholar] [CrossRef]
- Xu, C.; Wu, Q.; L’Espérance, G.; Lebel, L.; Therriault, D. Environment-friendly and reusable ink for 3D printing of metallic structures. J. Mat. Design 2018, 160, 262–269. [Google Scholar] [CrossRef]
- Wiria, F.E.; Maleksaeedi, S.; He, Z. Manufacturing and characterization of porous titanium components. Prog. Cryst. Growth Charact. Mater. 2014, 60, 94–98. [Google Scholar] [CrossRef]
- Maleksaeedi, S.; Wang, J.K.; El-Hajje, A.; Harb, L.; Guneta, V.; He, Z.; Wiria, F.; Choong, C.; Ruys, A. Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth. Procedia CIRP 2013, 5, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Guneta, V.; Wang, J.K.; Maleksaeedi, S.; He, Z.M.; Wong, M.T.C.; Choong, C. Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study. J. Biomimetics Biomater. Biomed. Eng. 2014, 21, 101–115. [Google Scholar] [CrossRef]
- Wiria, F.E.; Shyan, J.Y.M.; Lim, P.N.; Wen, F.G.C.; Yeo, J.F.; Cao, T. Printing of Titanium implant prototype. Mater. Des. 2010, 31, S101–S105. [Google Scholar] [CrossRef]
- Alvarez, K.; Nakajima, H. Metallic Scaffolds for Bone Regeneration. Materials 2009, 2, 790–832. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [Green Version]
- Guillem-Marti, J.; Boix-Lemonche, G.; Gugutkov, D.; Ginebra, M.P.; Altankov, G.P.; Manero, J.M. Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine 2018, 13, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Bhat, V.; Balaji, S.S. Surface topography of dental implants. NUJHS 2014, 4, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Gitten, R.A.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomater. 2014, 10, 3363–3371. [Google Scholar] [CrossRef] [Green Version]
- Ryan, G.E.; Pandit, A.S.; Apatsidis, D.P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 2008, 29, 3625–3635. [Google Scholar] [CrossRef]
- El-Hajje, A.; Kolos, E.C.; Wang, J.K.; Maleksaeedi, S.; He, Z.; Wiria, F.E.; Choong, C.; Ruys, A.J. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. J. Mater. Sci: Mater. Med. 2014, 25, 2471–2480. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Taylor, S.L.; Jakus, A.E.; Shah, R.N.; Dunand, D.C. Iron and Nickel Cellular Structures by Sintering. Adv Eng. Mater. 2016, 19, 1600365. [Google Scholar] [CrossRef]
- Zhang, L.; Song, B.; Liu, R.; Zhao, A.; Shi, Y. Effects of Structural Parameters on the Poisson’s Ratio and Compressive Modulus of 2D Pentamode Structures Fabricated by Selective Laser Melting. Engineering 2020, 6, 56–67. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Pororsity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, D.Z.; Zhang, P.; Zhao, M.; Jafar, S. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting. Materials 2018, 11, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herranz-Diez, C.; Li, Q.; Lamprecht, C.; Mas-Moruno, C.; Neubauer, S.; Kessler, H.; Manero, J.M.; Guillem-Marti, J.; Selhuber-Unkel, C. Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids Surf. B 2015, 136, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Guillem-Marti, J.; Cinca, N.; Punset, M.; García Cano, I.; Gil, F.J.; Guilemany, J.M.; Dosta, S. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf. B 2019, 180, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fan, Y.; Dunne, N.; Li, X. Effect of microporosity on scaffolds for bone tissue engineering. Reg. Biomater. 2018, 5, 115–124. [Google Scholar] [CrossRef]
- Salerno, A.; Guarnieri, D.; Iannone, M.; Zeppetelli, S.; Netti, P.A. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng. Part A 2010, 16, 2661–2673. [Google Scholar] [CrossRef] [Green Version]
- Guillem-Marti, J.; Gelabert, M.; Heras-Parets, A.; Peguroles, M.; Ginebra, M.-P.; Manero, J.M. RGD Mutation of the Heparin Binding II Fragment of Fibronectin for Guiding Mesenchymal Stem Cell Behavior on Titanium Surfaces. ACS Appl. Mater. Interfaces 2019, 11, 3666–3678. [Google Scholar] [CrossRef] [Green Version]
- Mendoça, G.; Mendoça, D.B.S.; Simoes, L.G.P.; Araujo, A.L.; Leite, E.R.; Duarte, W.R.; Aragao, F.J.L.; Cooper, L.F. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 2009, 30, 4053–4062. [Google Scholar] [CrossRef]
Ink Reference | Titanium Powder (% w/w) | Hydrogel (% w/w) | Solid Volume Fraction (% vol) |
---|---|---|---|
I1 | 72.4 | 27.6 | 38 |
I2 | 69.0 | 31.0 | 34 |
I3 | 65.6 | 34.4 | 31 |
I4 | 62.5 | 37.5 | 28 |
Parameter | Sintering Temperature (°C) | ||
---|---|---|---|
1200 | 1300 | 1400 | |
Strut diameter after sintering (µm) | 311.9 ± 1.9 * | 298.1 ± 4.5 # | 276.4 ± 7.3 $ |
Scaffold diameter shrinkage (%) | 11.9 ± 1.2 * | 16.5 ± 0.4 # | 16.5 ± 1.4 # |
Scaffold height shrinkage (%) | 18.5 ± 1.5 * | 22.6 ± 0.3 # | 23.8 ± 0.2 $ |
Roughness (Ra, µm) | 8.5 ± 0.7 * | 8.3 ± 0.4 * | 7.2 ± 0.8 * |
Mean strut pore entrance size by MIP (µm) | 11.6 | 9.1 | 7.3 |
Mean scaffold pore size by SEM (µm) | 400.2 ± 18.8 * | 332.1 ± 16.7 # | 316 ± 9.9 # |
Strut porosity by MIP (%) | 12.0 | 11.3 | 8.6 |
Scaffold porosity by micro-CT (%) | 65.7 | 64.3 | 63.7 |
Total porosity (%) | 77.7 | 75.6 | 72.3 |
Type of Bone | Direction and Type of Load | Elastic Modulus (GPa) | Reference | |
---|---|---|---|---|
Cortical bone | Midfemoral | Longitudinal compression | 17 | [54] |
Transverse compression | 11.5 | [54] | ||
- | - | 14.1–27.6 | [55] | |
Trabecular | Proximal femoral | Longitudinal | 0.441 | [55] |
- | - | 0.100–0.400 | [55] | |
Femoral bone | 0.0657–0.873 | [55] | ||
Proximal tibia | Longitudinal | 0.004–0.430 | [55] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, E.; Torres, D.; Guillem-Marti, J.; Scionti, G.; Manero, J.M.; Ginebra, M.-P.; Rodríguez, D.; Rupérez, E. Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals 2020, 10, 1156. https://doi.org/10.3390/met10091156
Vidal E, Torres D, Guillem-Marti J, Scionti G, Manero JM, Ginebra M-P, Rodríguez D, Rupérez E. Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals. 2020; 10(9):1156. https://doi.org/10.3390/met10091156
Chicago/Turabian StyleVidal, Elia, Diego Torres, Jordi Guillem-Marti, Giuseppe Scionti, José María Manero, Maria-Pau Ginebra, Daniel Rodríguez, and Elisa Rupérez. 2020. "Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior" Metals 10, no. 9: 1156. https://doi.org/10.3390/met10091156
APA StyleVidal, E., Torres, D., Guillem-Marti, J., Scionti, G., Manero, J. M., Ginebra, M. -P., Rodríguez, D., & Rupérez, E. (2020). Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals, 10(9), 1156. https://doi.org/10.3390/met10091156