The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Evolution
3.2. Solidification Behavior and Mechanical Properties
3.3. Fracture Behavior
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Song, J.F.; She, J.; Chen, D.L.; Pan, F.S. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Wang, W.; Han, P.; Peng, P.; Zhang, T.; Liu, Q.; Yuan, S.N.; Huang, L.Y.; Yu, H.L.; Qiao, K.; Wang, K.S. Friction Stir Processing of Magnesium Alloys: A Review. Acta Metall. Sin. Engl. Lett. 2020, 33, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Sun, Y.; Ge, B.; Fu, H.; Zu, Q.; Tang, X.; Huang, J. Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys. ACTA Mater. 2019, 169, 36–44. [Google Scholar] [CrossRef]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. ACTA Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Liu, J.N.; Bian, D.; Zheng, Y.F.; Chu, X.; Lin, Y.L.; Wang, M.; Lin, Z.; Li, M.F.; Zhang, Y.; Guan, S.K. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater. 2020, 102, 508–528. [Google Scholar] [CrossRef]
- Chang, C.I.; Du, X.H.; Huang, J.C. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing. Scr. Mater. 2007, 57, 209–212. [Google Scholar] [CrossRef]
- Azzeddine, H.; Hanna, A.; Dakhouche, A.; Rabahi, L.; Scharnagl, N.; Dopita, M.; Brisset, F.; Helbert, A.L.; Baudin, T. Impact of rare-earth elements on the corrosion performance of binary magnesium alloys. J. Alloys Compd. 2020, 829, 14. [Google Scholar] [CrossRef]
- Lin, H.; Yang, M.; Tang, H.; Pan, F. Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy. Prog. Nat. Sci. Mater. Int. 2018, 28, 66–73. [Google Scholar] [CrossRef]
- Liu, Y.F.; Jia, X.J.; Qiao, X.G.; Xu, S.W.; Zheng, M.Y. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys. J. Alloys Compd. 2019, 806, 71–78. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Panigrahi, S.K. Effect of in-situ (TiC-TiB2) reinforcement on aging and mechanical behavior of AZ91 magnesium matrix composite. Mater. Charact. 2018, 139, 221–232. [Google Scholar] [CrossRef]
- Wang, B.; Chen, X.; Pan, F.; Mao, J. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. Prog. Nat. Sci. Mater. Int. 2017, 27, 695–702. [Google Scholar] [CrossRef]
- Tie, D.; Zhang, B.; Yan, L.; Guan, R.; Ji, Z.; Liu, H.; Zhang, D.; Liu, D.; Chen, M. Rheological Solidification Behavior and Mechanical Properties of AZ91-Sn Alloys. Crystals 2019, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Sun, Y.; Ding, W. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Mater. Sci. Eng. A 2001, 308, 38–44. [Google Scholar]
- Luo, Q.; Guo, Y.L.; Liu, B.; Feng, Y.J.; Zhang, J.Y.; Li, Q.; Chou, K. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review. J. Mater. Sci. Technol. 2020, 44, 171–190. [Google Scholar] [CrossRef]
- Fu, L.; Le, Q.; Hu, W.; Zhang, J.; Wang, J. Strengths and ductility enhanced by micro-alloying Sm/La/Ca to Mg–0.5Zn–0.2Mn alloy. J. Mater. Res. Technol. 2020, 9, 6834–6849. [Google Scholar] [CrossRef]
- Nami, B.; Shabestari, S.G.; Razavi, H.; Mirdamadi, S.; Miresmaeili, S.M. Effect of Ca, RE elements and semi-solid processing on the microstructure and creep properties of AZ91 alloy. Mater. Sci. Eng. A 2011, 528, 1261–1267. [Google Scholar] [CrossRef]
- Luo, Q.; Zhai, C.; Gu, Q.F.; Zhu, W.F.; Li, Q. Experimental study and thermodynamic evaluation of Mg-La-Zn system. J. Alloys Compd. 2020, 814, 13. [Google Scholar] [CrossRef]
- Wong, C.; Styles, M.J.; Zhu, S.; Qiu, D.; McDonald, S.D.; Zhu, Y.; Gibson, M.A.; Abbott, T.B.; Easton, M.A. (Al, Mg)3La: A new phase in the Mg–Al–La system. ACTA Crystallogr. B 2018, 74, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Qiao, X.G.; Li, Z.T.; Xia, Z.H.; Zheng, M.Y. Effect of nano-precipitation on thermal conductivity and mechanical properties of Mg-2Mn-xLa alloys during hot extrusion. J. Alloys Compd. 2020, 830, 9. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, H.C.; Lian, Q.Y.; Jiang, L.Y.; Wu, G.X. Effect of extrusion treatment on mechanical, thermal conductivity and corrosion resistance of magnesium alloys. Mater. Express 2019, 9, 405–412. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Zhao, J.; Chen, M.F. Comparative study of the effects of CaO and Ce-La misch metal on the microstructure and properties of AZ91 alloy. J. Mater. Res. Technol. 2020, 9, 5194–5203. [Google Scholar] [CrossRef]
- Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy. Mater. Sci. Eng. A 2013, 587, 179–184. [Google Scholar] [CrossRef]
- Jain, V.; Mishra, R.S.; Gupta, A.K.; Gouthama. Study of β-precipitates and their effect on the directional yield asymmetry of friction stir processed and aged AZ91C alloy. Mater. Sci. Eng. A 2013, 560, 500–509. [Google Scholar] [CrossRef]
- Stanford, N.; Geng, J.; Chun, Y.B.; Davies, C.H.J.; Nie, J.F.; Barnett, M.R. Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression. ACTA Mater. 2012, 60, 218–228. [Google Scholar] [CrossRef]
- Meng, F.; Lv, S.; Yang, Q.; Qin, P.; Zhang, J.; Guan, K.; Huang, Y.; Hort, N.; Li, B.; Liu, X.; et al. Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. J. Alloys Compd. 2019, 795, 436–445. [Google Scholar] [CrossRef]
- Feng, A.H.; Ma, Z.Y. Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging. ACTA Mater. 2009, 57, 4248–4260. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, X.; Pan, F.; Gao, S.; Zhao, D.; Liu, X. Effect of Sn content on strain hardening behavior of as-extruded Mg-Sn alloys. Mater. Sci. Eng. A 2018, 713, 244–252. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, X.; Pan, F.; Wang, J.; Gao, S.; Tu, T.; Liu, C.; Yao, J.; Atrens, A. Strain hardening of as-extruded Mg-xZn (x = 1, 2, 3 and 4 wt%) alloys. J. Mater. Sci. Technol. 2019, 35, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Wang, C.P.; Guo, N.; Pan, H.C.; Xin, R.L. Improving Tensile and Compressive Properties of an Extruded AZ91 Rod by the Combined Use of Torsion Deformation and Aging Treatment. Materials 2017, 10, 13. [Google Scholar] [CrossRef]
- Bu, F.; Yang, Q.; Guan, K.; Qiu, X.; Zhang, D.; Sun, W.; Zheng, T.; Cui, X.; Sun, S.; Tang, Z.; et al. Study on the mutual effect of La and Gd on microstructure and mechanical properties of Mg-Al-Zn extruded alloy. J. Alloys Compd. 2016, 688, 1241–1250. [Google Scholar] [CrossRef]
- Li, B.; Ma, Q.; McClelland, Z.; Horstemeyer, S.J.; Whittington, W.R.; Brauer, S.; Allison, P.G. Twin-like domains and fracture in deformed magnesium. Scr. Mater. 2013, 69, 493–496. [Google Scholar] [CrossRef]
- Li, K.; Injeti, V.S.Y.; Misra, R.D.K.; Meng, L.G.; Zhang, X.G. The contribution of long-period stacking-ordered structure (LPSO) to high strength-high ductility combination and nanoscale deformation behavior of magnesium-rare earth alloy. Mater. Sci. Eng. A 2018, 713, 112–117. [Google Scholar] [CrossRef]
- Teschke, M.; Koch, A.; Walther, F. Comparison of High-Temperature Compression and Compression-Compression Fatigue Behavior of Magnesium Alloys DieMag422 and AE42. Materials 2020, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Mulay, R.P.; Agnew, S.R. The fracture behavior of B2 structured MgR intermetallics. Scr. Mater. 2009, 61, 1036–1039. [Google Scholar] [CrossRef]
- Orlov, D.; Raab, G.; Lamark, T.T.; Popov, M.; Estrin, Y. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. ACTA Mater. 2011, 59, 375–385. [Google Scholar] [CrossRef]
Alloy | Mg | Al | Zn | La | Mn | Si | Cu |
---|---|---|---|---|---|---|---|
AZ91 | Balance | 9.23 | 0.86 | 0 | 0.21 | 0.03 | 0.01 |
AZ91–0.5La | Balance | 9.19 | 0.86 | 0.48 | 0.21 | 0.03 | 0.01 |
AZ91–1.0La | Balance | 9.15 | 0.84 | 0.97 | 0.20 | 0.02 | 0.01 |
AZ91–1.5La | Balance | 9.10 | 0.84 | 1.46 | 0.20 | 0.03 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tie, D.; Jiang, Y.; Guan, R.; Chen, M.; Jiang, J.; Gao, F.; Lu, X.; Zhao, Z. The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy. Metals 2020, 10, 1256. https://doi.org/10.3390/met10091256
Tie D, Jiang Y, Guan R, Chen M, Jiang J, Gao F, Lu X, Zhao Z. The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy. Metals. 2020; 10(9):1256. https://doi.org/10.3390/met10091256
Chicago/Turabian StyleTie, Di, Yi Jiang, Renguo Guan, Minfang Chen, Jufu Jiang, Fei Gao, Xiaopeng Lu, and Zhanyong Zhao. 2020. "The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy" Metals 10, no. 9: 1256. https://doi.org/10.3390/met10091256
APA StyleTie, D., Jiang, Y., Guan, R., Chen, M., Jiang, J., Gao, F., Lu, X., & Zhao, Z. (2020). The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy. Metals, 10(9), 1256. https://doi.org/10.3390/met10091256