Improved Tribocorrosion Resistance by Addition of Sn to CrFeCoNi High Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Hardness Testing
2.4. Corrosion Testing
2.5. Tribocorrosion Testing
3. Results and Discussion
3.1. Microstructure and Chemical Composition of As-Cast HEA Samples
3.2. Hardness Development
3.3. Corrosion Performance
3.4. Tribocorrosion Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Ortega, A.; Bayón, R.; Arana, J.L. Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater. Surf. Coat. Technol. 2018, 349, 1083–1097. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yan, Y.; Qiao, L.J. Nanocrystalline layer on the bearing surfaces of artificial hip implants induced by biotribocorrosion processes. Biosurface Biotribol. 2015, 1, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Maleque, A.; Abdulmumin, A.A. Tribocorrosion behaviour of biodiesel—A review. Tribol. Online 2014, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.J.K.; Bahaj, A.S.; Turnock, S.R.; Wang, L.; Evans, M. Tribological design constraints of marine renewable energy systems. Philos. Trans. R. Soc. A 2010, 368, 4807–4827. [Google Scholar] [CrossRef] [PubMed]
- López-Ortega, A.; Arana, J.L.; Bayón, R. Tribocorrosion of passive materials: A review on test procedures and standards. Int. J. Corros. 2018, 1, 1–24. [Google Scholar] [CrossRef]
- López-Ortega, A.; Bayón, R.; Pagano, F.; Igartua, A.; Arredondo, A.; Arana, J.L.; González, J.J. Tribocorrosion behaviour of mooring high strength low alloy steels in synthetic seawater. Wear 2015, 338–339, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Rana, V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Mater. Chem. Phys. 2011, 129, 138–147. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Li, Q.-A.; Fu, S.-L.; Wang, J.-Z. Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Trans. Nonferrous Met. Soc. China 2014, 24, 1022–1031. [Google Scholar] [CrossRef]
- Ng, C.; Guo, S.; Luan, J.; Wang, Q.; Lu, J.; Shi, S.; Liu, C.T. Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys. J. Alloys Compd. 2014, 584, 530–537. [Google Scholar] [CrossRef]
- Gorr, B.; Azim, M.; Christ, H.-J.; Mueller, T.; Schliephake, D.; Heilmaier, M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 2015, 624, 270–278. [Google Scholar] [CrossRef]
- Kao, Y.-F.; Chen, S.-K.; Chen, T.-J.; Chu, P.-C.; Yeh, J.-W.; Lin, S.-J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 2011, 509, 1607–1614. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, H.; Dong, S.Y. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd. 2017, 698, 761–770. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 2004, 35, 2533–2536. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, Z.; Xu, H.; Sun, Y. Studies on the microstructure and properties of AlxCoCrFeNiTi1−x high entropy alloys. J. Alloys Compd. 2018, 741, 826–833. [Google Scholar] [CrossRef]
- Argade, G.R.; Joshi, S.S.; Ayyagari, A.V.; Mukherjee, S.; Mishra, R.S.; Dahotre, N.B. Tribocorrosion performance of laser additively processed high-entropy alloy coatings on aluminium. Appl. Phys. A 2019, 125, 1–9. [Google Scholar] [CrossRef]
- Muangtong, P.; Rodchanarowan, A.; Chaysuwan, D.; Chanlek, N.; Goodall, R. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution. Corros. Sci. 2020, 172, 1–11. [Google Scholar] [CrossRef]
- Butler, T.M.; Weaver, M.L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 2016, 674, 229–244. [Google Scholar] [CrossRef]
- Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 2016, 683, 221–230. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials, 2nd ed.; ButterWorth-Heinemann: Oxford, UK, 1992; pp. 114–118. [Google Scholar]
- Muñoz, A.I.; Espallargas, N. 5—Tribocorrosion mechanisms in sliding contacts. In Tribocorrosion of Passive Metals and Coatings, 1st ed.; Landolt, D., Mischler, S., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 118–152. [Google Scholar] [CrossRef]
- Namus, R.; Rainforth, W.M. Influence of protein adsorption on tribocorrosion behaviour of CoCrMo biomedical-grade alloys. Tribol. Int. 2020, 150, 1–9. [Google Scholar] [CrossRef]
- Espallargas, N.; Johnsen, R.; Torres, C.; Muñoz, A.I. A new experimental technique for quantifying the galvanic coupling effects on stainless steel during tribocorrosion under equilibrium conditions. Wear 2013, 307, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.C.; Rocha, L.A.; Papageorgiou, N.; Mischler, S. Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corros. Sci. 2012, 54, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, N.; Mischler, S. Electrochemical simulation of the current and potential response in sliding tribocorrosion. Tribol. Lett. 2012, 48, 271–283. [Google Scholar] [CrossRef]
- Mischler, S. Sliding tribo-corrosion of passive metals: Mechanisms and modeling. In Tribo-Corrosion: Research, Testing, and Applications; Blau, P., Celis, J., Drees, D., Franek, F., Eds.; ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–18. [Google Scholar]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Cornide, J.; Calvo-Dahlborg, M.; Chambreland, S.; Asensio Dominguez, L.; Leong, Z.; Dahlborg, U.; Cunliffe, A.; Goodall, R.; Todd, I. Combined atom probe tomography and TEM investigations of CoCrFeNi, CoCrFeNi-Pdx (x = 0.5, 1.0, 1.5) and CoCrFeNi-Sn. Acta Phys. Pol. A 2015, 128, 557–560. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, J.B.; Zhang, C.; Li, J.C.; Jiang, Q. Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Mater. Sci. Eng. A 2012, 548, 64–68. [Google Scholar] [CrossRef]
- Wang, B.; He, H.; Naeem, M.; Lan, S.; Harjo, S.; Kawasaki, T.; Nie, Y.; Kui, H.W.; Ungár, T.; Ma, D.; et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr. Mater. 2018, 155, 54–57. [Google Scholar] [CrossRef]
- Zaddach, A.J.; Niu, C.; Koch, C.C.; Irving, D.L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 2013, 65, 1780–1789. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Han, B.; Wu, Q.; Chen, D.; Li, J.; Wang, J.; Liu, C.T.; Kai, J.J. Solid solubility, precipitates, and stacking fault energy of microalloyed CoCrFeNi high entropy alloys. J. Alloys Compd. 2018, 769, 490–502. [Google Scholar] [CrossRef]
- Rosoiu, S.P.; Pantazi, A.G.; Petica, A.; Cojocaru, A.; Costovici, S.; Zanella, C.; Visan, T.; Anicai, L.; Enachescu, M. Comparative study of Ni-Sn alloys electrodeposited from choline chloride-based ionic liquids in direct and pulsed current. Coatings 2019, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; He, M.; Balakrisnan, B.; Chum, C.C. Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films. Mater. Sci. Eng. A 2006, 423, 107–110. [Google Scholar] [CrossRef]
- Kocijan, A.; Milošev, I.; Merl, D.K.; Pihlar, B. Electrochemical study of Co-based alloys in simulated physiological solution. J. Appl. Electrochem. 2004, 34, 517–524. [Google Scholar] [CrossRef]
- Vidal, C.V.; Muñoz, A.I. Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochim. Acta 2009, 54, 1798–1809. [Google Scholar] [CrossRef]
- Namus, R.; Nutter, J.; Qi, J.; Rainforth, W.M. The influence of protein concentration, temperature and cathodic polarization on the surface status of CoCrMo biomedical grade alloys. Appl. Surf. Sci. 2020, 499, 1–13. [Google Scholar] [CrossRef]
HEA System | Phase Composition | Chemical Composition (at.%) | ||||
---|---|---|---|---|---|---|
Co | Cr | Fe | Ni | Sn | ||
CrFeCoNi | CrFeCoNi FCC | 25.4 | 25.1 | 25.2 | 24.3 | - |
CrFeCoNiSn | Ni-Sn Hexagonal | 14.1 | 8.5 | 10.3 | 28.8 | 38.3 |
CrFeCoNi FCC | 28.5 | 26.2 | 30.7 | 11.6 | 3.0 |
Elements | Co | Cr | Fe | Ni | Sn |
---|---|---|---|---|---|
Co | −4 | −1 | 0 | 0 | |
Cr | −1 | −7 | 10 | ||
Fe | −2 | 11 | |||
Ni | −4 | ||||
Sn |
HEA System | icorr (µA/cm2) | Ecorr (mVSCE) | Ep (mVSCE) | ΔEp (mVSCE) | Rp (Ω·cm2) × 106 |
---|---|---|---|---|---|
CrFeCoNi | 0.05 ± 0.01 | −170.59 ± 2.35 | 320.07 ± 3.67 | 490.66 ± 6.02 | 0.53 ± 0.01 |
CrFeCoNiSn | 0.04 ± 0.003 | −140.16 ± 43.71 | 887.47 ± 192.13 | 1027.63 ± 235.83 | 0.64 ± 0.05 |
HEA System | Rs (Ω·cm2) | Rads (kΩ·cm2) | Qads (µF·cm−1sα − 1) | nads | Roxide (MΩ·cm2) | Qoxide (µF·cm−1sα − 1) | noxide | Chi-Sqr | Sum-Sqr |
---|---|---|---|---|---|---|---|---|---|
CoCrFeNi | 3.90 ± 0.45 | 1.70 ± 0.10 | 160.33 ± 36.24 | 0.98 | 0.36 ± 0.04 | 49.21 ± 4.03 | 0.89 | 0.0014 | 0.18 |
CoCrFeNiSn | 3.35 ± 0.26 | 18.10 ± 12.36 | 126.26 ± 20.45 | 0.88 | 1.35 ± 0.18 | 37.13 ± 1.98 | 0.95 | 0.0019 | 0.23 |
HEA System | Condition | Averaged COF | V (mm3) × 10−4 | SA (mm2) | K (mm3/N m) × 10−6 | Esliding (V) | iωt (mA/cm2) × 10−2 | W0 (mm/y) | ΔWC (mm/y) | ΔCW (mm/y) | T (mm/y) |
---|---|---|---|---|---|---|---|---|---|---|---|
CrFeCoNi | OCP | 0.34 ± 0.02 | 8.18 ± 0.5 | 0.48 ± 0.04 | 7.57 ± 0.4 | −0.47 | 5.6 | 0.42 ± 0.08 | 3.86 | 0.62 ± 0.03 | 4.91 ± 0.05 |
Cathodic | 0.43 ± 0.01 | 0.26 ± 0.04 | 0.17 ± 0.02 | 0.24 ± 0.03 | |||||||
CrFeCoNiSn | OCP | 0.31 ± 0.02 | 1.92 ± 0.1 | 0.34 ± 0.002 | 1.77 ± 0.1 | −0.46 | 1 | 0.37 ± 0.001 | 1.17 | 0.11 ± 0.01 | 1.66 ± 0.09 |
Cathodic | 0.38 ± 0.02 | 0.16 ± 0.02 | 0.13 ± 0.01 | 0.14 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muangtong, P.; Namus, R.M.; Goodall, R. Improved Tribocorrosion Resistance by Addition of Sn to CrFeCoNi High Entropy Alloy. Metals 2021, 11, 13. https://doi.org/10.3390/met11010013
Muangtong P, Namus RM, Goodall R. Improved Tribocorrosion Resistance by Addition of Sn to CrFeCoNi High Entropy Alloy. Metals. 2021; 11(1):13. https://doi.org/10.3390/met11010013
Chicago/Turabian StyleMuangtong, Piyanut, Righdan Mohsen Namus, and Russell Goodall. 2021. "Improved Tribocorrosion Resistance by Addition of Sn to CrFeCoNi High Entropy Alloy" Metals 11, no. 1: 13. https://doi.org/10.3390/met11010013
APA StyleMuangtong, P., Namus, R. M., & Goodall, R. (2021). Improved Tribocorrosion Resistance by Addition of Sn to CrFeCoNi High Entropy Alloy. Metals, 11(1), 13. https://doi.org/10.3390/met11010013