A New Method for Weld Dilution Calculation through Chemical Composition Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sampled Areas and Alloying Compositions
3.2. Comparison of Dilutions from Different Equations
3.3. Effect of Heat Input on Dilution
4. Conclusions
- (1)
- Compared with the existing method, the proposed method in our paper agrees better with the definition of dilution in welding, which has a widespread application to welds alloying either one or more compositions. For the beads alloying two or more compositions, the dilution values vary widely according to the relative composition concentration between the filler metal and the substrate.
- (2)
- The new method removes the mathematical restriction of forcing the dilution variation into a limited range of 0~1 by the existing methods, by which it reveals more clearly the phenomenon that when a bead dilution is greater than the critical value 1, the composition is concentrated, such as the Si dilution soaring to 885.43% from 49.87% (chemical method) and 25.30% (geometric method), while when the value falls into 0~1, the bead is diluted. However, the gross weld dilution value is much closer to the individual dilution value which has a higher weight coefficient.
- (3)
- Whether a certain composition is diluted or concentrated under a low level of heat input, the increase of the heat input propels the compositions’ concentration toward that of the original substrate. However, the dilution becomes stable once the heat input is beyond the transition point 0.18 kJ/mm in our case, which may result from the adequate convection of molten pool caused by the high-level heat input.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marashi, P.; Pouranvari, M.; Amirabdollahian, S.; Abedi, A.; Goodarzi, M. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Mater. Sci. Eng. A 2008, 480, 175–180. [Google Scholar] [CrossRef]
- Sierra, G.; Peyre, P.; Deschaux-Beaume, F.; Stuart, D.; Fras, G. Steel to aluminium key-Hole laser welding. Mater. Sci. Eng. A 2007, 447, 197–208. [Google Scholar] [CrossRef]
- Yao, C.; Xu, B.; Zhang, X.; Huang, J.; Fu, J.; Wu, Y. Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint. Opt. Lasers Eng. 2009, 47, 807–814. [Google Scholar] [CrossRef]
- Ranjbarnodeh, E.; Serajzadeh, S.; Kokabi, A.H.; Fischer, A. Effect of welding parameters on residual stresses in dissimilar joint of stainless steel to carbon steel. J. Mater. Sci. 2011, 46, 3225–3232. [Google Scholar] [CrossRef]
- Hou, J.; Peng, Q.J.; Takeda, Y.; Kuniya, J.; Shoji, T.; Wang, J.Q.; Han, E.H.; Ke, W. Microstructure and mechanical property of the fusion boundary region in an alloy 182-low alloy steel dissimilar weld joint. J. Mater. Sci. 2010, 45, 5332–5338. [Google Scholar] [CrossRef]
- Svensson, L.E. Prediction of hardness of spot welds in steels. Weld. World 2004, 48, 31–35. [Google Scholar] [CrossRef]
- Hernandez, B.V.H.; Kuntz, M.L.; Khan, M.I.; Zhou, Y. Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds. Sci. Technol. Weld. Join. 2008, 13, 769–776. [Google Scholar] [CrossRef]
- Ramjaun, T.I.; Stone, H.J.; Karlsson, L.; Kelleher, J.; Ooi, S.W.; Dalaei, K.; Kornmeier, J.R.; Bhadeshia, H.K.D.H. Effects of dilution and baseplate strength on stress distributions in multipass welds deposited using low transformation temperature filler alloys. Sci. Technol. Weld. Join. 2014, 19, 461–467. [Google Scholar] [CrossRef]
- Sun, Y.L.; Hamelin, C.J.; Vasileiou, A.N.; Xiong, Q.; Flint, T.F.; Obasi, G.; Francis, J.A.; Smith, M.C. Effects of dilution on the hardness and residual stresses in multipass steel weldments. Int. J. Press. Vessel. Pip. 2020, 187, 104154. [Google Scholar] [CrossRef]
- Zhang, M.L.Y.; Chen, S.; Rong, L.; Lu, H. Effect of dilution ratio of the first 309l cladding layer on the microstructure and mechanical properties of weld joint of connecting pipe-Nozzle to safe-End in nuclear power plant. Acta Metall. Sin. 2020, 56, 1057–1066. [Google Scholar]
- Gualco, A.; Svoboda, H.N.G.; Surian, E.S. Effect of heat input on the Fe-Based nanostructured weld overlay. Weld. Int. 2015, 29, 847–855. [Google Scholar] [CrossRef]
- Banovic, S.W.; DuPont, I.N.; Marder, A.R. Dilution control in gas-Tungsten-Arc welds involving superaustenitic stainless steels and nickel-Based alloys. Metall. Mater. Trans. B 2001, 32, 1171–1176. [Google Scholar] [CrossRef]
- Silva, C.C.; Afonso, C.R.M.; Ramirez, A.J.; Motta, M.F.; Miranda, H.C.; Farias, J.P. Assessment of microstructure of alloy Inconel 686 dissimilar weld claddings. J. Alloys Compd. 2016, 684, 628–642. [Google Scholar] [CrossRef]
- Sayyar, N.; Shamanian, M.; Niroumand, B. Arc weldability of Incoloy 825 to AISI 321 stainless steel welds. J. Mate. Process. Technol. 2018, 262, 562–570. [Google Scholar] [CrossRef]
- Yuan, T.; Chai, X.; Luo, Z.; Kou, S. Predicting susceptibility of magnesium alloys to weld-edge cracking. Acta Mater. 2015, 90, 242–251. [Google Scholar] [CrossRef]
- Pickin, C.G.; Williams, S.W.; Lunt, M. Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J. Mater. Process. Technol. 2011, 211, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Hu, S.; Shen, J.; Zhang, H.; Wang, P. Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding. J. Mater. Process. Technol. 2017, 239, 18–30. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, N.; Mishra, B.K. Mathematical model of bead profile in high deposition welds. J. Mater. Process. Technol. 2015, 220, 65–75. [Google Scholar] [CrossRef]
- Hejripour, F.; Valentine, D.T.; Aidun, D.K. Study of mass transport in cold wire deposition for wire arc additive manufacturing. Int. J. Heat Mass Transf. 2018, 125, 471–484. [Google Scholar] [CrossRef]
- Zhu, Q.; Xue, J.; Yao, P.; Dong, C.; Wang, L.; Heng, G.; Li, Z. Gaussian pulsed current waveform welding for aluminum alloys. Mater. Manuf. Process. 2014, 30, 1124–1130. [Google Scholar] [CrossRef]
- Wang, L.; Jin, L.; Huang, W.; Xu, M.; Xue, J. Effect of thermal frequency on AA6061 aluminum alloy double pulsed gas metal arc welding. Mater. Manuf. Process. 2015, 31, 2152–2157. [Google Scholar] [CrossRef]
- Feng, Y.; Luo, Z.; Liu, Z.; Li, Y.; Luo, Y.; Huang, Y. Keyhole gas tungsten arc welding of AISI 316l stainless steel. Mater. Des. 2015, 85, 24–31. [Google Scholar] [CrossRef]
- Pang, J.; Hu, S.; Shen, J.; Wang, P.; Liang, Y. Arc characteristics and metal transfer behavior of CMT + p welding process. J. Mater. Process. Technol. 2016, 238, 212–217. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, J. Profile map of weld beads and its formation mechanism in gas metal arc welding. Metals 2019, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xue, J.; Jin, L.; Wu, W. Effect of droplet impingement on the weld profile and grain morphology in the welding of aluminum alloys. Appl. Sci. 2018, 8, 1203. [Google Scholar] [CrossRef] [Green Version]
Material | Mg | Si | Fe | Cu | Mn | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|
AA6061 | 0.87 | 0.66 | 0.42 | 0.29 | 0.09 | 0.27 | 0.08 | Bal. |
ER4047 | 0.05 | 11.06 | 0.30 | 0.13 | 0.12 | 0.04 | 0.07 | Bal. |
Process Parameters | Value |
---|---|
Mean voltage (V) | 24.3 |
Mean current (A) | A:72 B:88 C:104 D:120 E:36 |
Welding speed (mm/s) | 10 |
Heat input (kJ/mm) | A:0.12 B:0.15 C:0.180.18 D:0.20 E:0.0.23 |
Heat Input (kJ/mm) | 0.12 | 0.15 | 0.18 | 0.20 | 0.23 |
---|---|---|---|---|---|
Mg | 0.24 | 0.42 | 0.42 | 0.46 | 0.43 |
Si | 5.87 | 3.87 | 2.43 | 2.62 | 2.65 |
Heat Input kJ/mm | Dgeo | DcMg | DcSi | DwMg | DwSi | DwAll |
---|---|---|---|---|---|---|
0.12 | 0.25 | 0.23 | 0.5 | 0.27 | 8.85 | 5.94 |
0.15 | 0.53 | 0.45 | 0.69 | 0.48 | 5.83 | 4.11 |
0.18 | 0.66 | 0.45 | 0.83 | 0.48 | 3.66 | 2.69 |
0.20 | 0.66 | 0.5 | 0.81 | 0.53 | 3.95 | 2.92 |
0.23 | 0.73 | 0.46 | 0.81 | 0.5 | 4 | 2.93 |
Heat Input, kJ/mm | 0.5 | 0.7 | 1 | 1.5 | 1.7 | 2.1 |
---|---|---|---|---|---|---|
Geometric Dilution | 30 | 32 | 34 | 36 | 35 | 36 |
Chemical Analysis of Cr | 31.93 | 33.13 | 36.14 | 37.35 | 36.75 | 38.55 |
Chemical Analysis of Nb | 16.09 | 22.99 | 25.29 | 25.29 | 27.59 | 25.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Huang, X.; Yao, P.; Xue, J. A New Method for Weld Dilution Calculation through Chemical Composition Analysis. Metals 2021, 11, 131. https://doi.org/10.3390/met11010131
Zhang Z, Huang X, Yao P, Xue J. A New Method for Weld Dilution Calculation through Chemical Composition Analysis. Metals. 2021; 11(1):131. https://doi.org/10.3390/met11010131
Chicago/Turabian StyleZhang, Zhanhui, Xuefei Huang, Ping Yao, and Jiaxiang Xue. 2021. "A New Method for Weld Dilution Calculation through Chemical Composition Analysis" Metals 11, no. 1: 131. https://doi.org/10.3390/met11010131
APA StyleZhang, Z., Huang, X., Yao, P., & Xue, J. (2021). A New Method for Weld Dilution Calculation through Chemical Composition Analysis. Metals, 11(1), 131. https://doi.org/10.3390/met11010131