Selected Properties of Hardfacing Layers Created by PTA Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, G.A.; Krauss, G.; Kennedy, R. Tool Steels, 5th ed.; ASM International: Materials Park, OH, USA, 2018; p. 364. ISBN 978-0-87170-599-0. [Google Scholar]
- Boccalini, M.; Goldenstein, H. Solidification of high speed steels. Int. Mater. Rev. 2012, 46, 92–115. [Google Scholar] [CrossRef]
- Jakubéczyová, D.; Fáberová, M. The structure and properties of the PM material, Vanadis 30 with surface treatment. J. Mater. Sci. 2005, 40, 4889–4891. [Google Scholar] [CrossRef]
- Chaus, A. Cast Metal-Cutting Tools Made of High-Speed Steels, 1st ed.; Forschungszentrum Dresden—Rossendorf: Dresden, Germany, 2010; p. 116. ISBN 978-3-941405-09-7. [Google Scholar]
- Ding, P.; Zhou, S.; Pan, F.; Liu, J. Ecotechnology for high-speed tool steels. Mater. Des. 2011, 22, 137–142. [Google Scholar] [CrossRef]
- Khan, P.L.; Bhivsane, S.V. Experimental Analysis and Investigation of Machining Parameters in Finish Hard Turning of AISI 4340 Steel. Procedia Manuf. 2018, 20, 265–270. [Google Scholar] [CrossRef]
- Zhou, N.; Peng, R.L.; Pettersson, R. Surface integrity of 2304 duplex stainless steel after different grinding operations. J. Mater. Process. Technol. 2016, 229, 294–304. [Google Scholar] [CrossRef]
- Muñoz-Escalona, P.; Shokrani, A.; Newman, S.T. Influence of cutting environments on surface integrity and power consumption of austenitic stainless steel. Robot. Comput. Integr. Manuf. 2015, 36, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Souki, I.; Delagnes, D.; Lours, P. Influence of heat treatment on the fracture toughness and crack propagation in 5% Cr martensitic steel. Procedia Eng. 2011, 10, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Mebarki, N.; Delagnes, D.; Lamesle, P.; Delmas, F.; Levaillant, C. Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel. Mater. Sci. Eng. A 2004, 387–389, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Lerchbacher, C.; Zinner, S.; Leitner, H. Direct or indirect: Influence of type of retained austenite decomposition during tempering on the toughness of a hot-work tool steel. Mater. Sci. Eng. A 2013, 564, 163–168. [Google Scholar] [CrossRef]
- Lerchbacher, C.; Zinnerb, S.; Leitnerc, H. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1. Micron 2012, 43, 818–826. [Google Scholar] [CrossRef]
- Rassili, A.; Pierret, J.C.; Vaneetveld, G.; Halleux, J.; Walmag, G.; Lecomte-Beckers, J. X38CrMoV5 hot-work tool steel as tool material for thixoforging of steel. Trans. Nonferrous Met. Soc. China 2010, 20, 713–718. [Google Scholar] [CrossRef]
- Mellouli, D.; Haddar, N.; Köster, A.; Ayedi, H.F. Hardness effect on thermal fatigue damage of hot-working tool steel. Eng. Fail. Anal. 2014, 45, 85–95. [Google Scholar] [CrossRef]
- Shaha, M.; Mabrub, C.; Rezai-Ariaa, F. Investigation of crack propagation in X38CrMoV5 (AISI H11) tool steel at elevated temperatures. Procedia Eng. 2010, 2, 2045–2054. [Google Scholar] [CrossRef]
- Pastor, A.; Valles, P.; Amurrio, I.; Medina, S.F. Heat treatment conditions to prevent failure in die cast X38CrMoV5 steel parts. Eng. Fail. Anal. 2015, 56, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.F.; Yu, D.J.; Zhao, Z.Z.; Zhang, Z.; Chen, G.; Chen, X. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature. Mater. Sci. Eng. A 2016, 667, 251–260. [Google Scholar] [CrossRef]
- Theil, N. Fatigue life prediction method for the practical engineering use taking in account the effect of the overload blocks. Int. J. Fatigue 2016, 90, 23–35. [Google Scholar] [CrossRef]
- Jin, X.C. A measurement and evaluation method for wheel-rail contact forces andaxle stresses of high-speed train. Meas. J. Int. Meas. Confed. 2020, 149, 106983. [Google Scholar] [CrossRef]
- Cao, R.; Li, G.; Fang, X.Y.; Song, J.; Chen, J.H. Investigation on the effects of microstructure on the impact and fracture toughness of a C-Mn steel with various microstructures. Mater. Sci. Eng. A 2013, 564, 509–524. [Google Scholar] [CrossRef]
- Fang, X.Y.; Cai, Z.B.; Wang, J.G.; Yang, X.F. Evaluation of temperature-sensitive fatigue crack propagation of a high-speed railway wheel rim material. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1815–1825. [Google Scholar] [CrossRef]
- Hokamoto, K.; Fujita, M.; Shimokawa, H.; Okugawa, H.J. A new method for explosive welding of Al/ZrO2 joint using regulated underwater shock wave. J. Mater. Process. Technol. 1999, 85, 175–179. [Google Scholar] [CrossRef]
- Kuykendall, K. An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding; A Dissertation submitted to the faculty of Brigham Young University; BYU ScholarsArchive: Provo, Utah, USA, 2011. [Google Scholar]
- Kuykendall, K.; Sorensen, C.; Nelson, T. A Comparison of Experimental Data and Model Predictions with Consitutitive Laws Commonly used to Model Friction Stir Welding; John Wiley and Sons, Inc.: San Diego, CA, USA, 2011. [Google Scholar] [CrossRef]
- Tello, K.; Gerlich, A.; Mendez, P. Constants for hot deformation constitutive models for recent experimental data. Sci. Technol. Weld. Join. 2010, 15, 260–266. [Google Scholar] [CrossRef]
- Gallina, D. Finite element prediction of crack formation induced by quenching in a forged valve. Eng. Fail. Anal. 2011, 18, 2250–2259. [Google Scholar] [CrossRef]
- Qiao, M.; Zhou, C. Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys. Corros. Sci. 2012, 63, 239–245. [Google Scholar] [CrossRef]
- Hassannejad, H.; Nouri, A. Formation of β-NiAl nanocomposite coating by electrodeposition and effect of cerium ion doping on its oxidation mechanism. Ceram. Int. 2017, 43, 9979–9984. [Google Scholar] [CrossRef]
- Zarezadeh Mehrizi, M.; Momeni, M.R.; Beygi, R.; Eisaabadi, B.G.; Kim, B.H.; Kim, S.K. Reaction pathway of NiAl/WC nanocomposite synthesized from mechanical activated Ni-Al-W-C powder system. Ceram. Int. 2019, 45, 11833–11837. [Google Scholar] [CrossRef]
- Lin, C.M.; Kai, W.Y.; Su, C.Y.; Key, K.H. Empirical alloys-by-design theory calculations to the microstructure evolution mechanical properties of Mo-doped laser cladding NiAl composite coatings on medium carbon steel substrates. J. Alloys Compd. 2017, 702, 679–686. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yue, H.Y.; Wang, X.P.; Xiao, S.L.; Kong, F.T.; Chen, X.K.; Peng, H. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness. Mater. Charact. 2018, 142, 584–592. [Google Scholar] [CrossRef]
- He, H.; Zhang, T.; Ma, M.X.; Liu, W.J. Microstructure and wear resistance of laser cladding particulate reinforced Fe-based composite coating on railway steel. J. Laser Appl. 2017, 29, 022503. [Google Scholar] [CrossRef]
- Fu, Z.K.; Ding, H.H.; Wang, W.J.; Liu, Q.Y.; Guo, J.; Zhu, M.H. Investigation on microstructure and wear characteristic of laser cladding Fe-based alloy on wheel/rail materials. Wear 2015, 330, 592–599. [Google Scholar] [CrossRef]
- Viňáš, J.; Brezinová, J.; Guzanová, A.; Svetlík, J. Degradation of renovation layers deposited on continuous steel casting rollers by submerged arc welding. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2013, 227, 1841–1848. [Google Scholar] [CrossRef]
- Viňáš, J.; Brezinová, J.; Guzanová, A.; Balog, P. Evaluation of the quality of cladding deposited on continuous steel casting rolls. Int. J. Mater. Res. 2013, 104, 183–191. [Google Scholar] [CrossRef]
- Roy, T.; Lai, Q.; Abrahams, R.; Mutton, P.; Paradowska, A.; Soodi, M.; Yan, W. Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails. Wear 2018, 412, 69–81. [Google Scholar] [CrossRef]
- Li, Z.Y.; Xing, X.H.; Yang, M.J.; Yang, B.; Ren, Z.Y.; Lin, H.Q. Investigation on rolling sliding wear behavior of wheel steel by laser dispersed treatment. Wear 2014, 314, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Boher, C.; Barrau, O.; Gras, R.; Rezai-Aria, F. A wear model based on cumulative cyclic plastic straining. Wear 2009, 267, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Atapek, S.H.; Polat, S.; Gümüş, S.; Erişir, E.; Altuğ, G.S. Determination of the Microstructure of Powder Tool Steels by Different Etching Techniques; Metal Science and Heat Treatment: Berlin/Heidelberg, Germany, 2014; Volume 56. [Google Scholar] [CrossRef]
- Saewe, J.; Wilms, M.B.; Lucas, J.; Schleifenbaum, J.H. Influence of Preheating Temperature on Hardness and Microstructure of High-Speed Steel hs6-5-3-8 Manufactured by Laser Powder Bed Fusion; Metal Additive Manufacturing Conference (MAMC): Örebro, Sweden, 2019. [Google Scholar]
- Jovičevic-Klug, P.; Podgornik, B. Comparative study of conventional and deep cryogenic treatment of AISI M3:2 (EN 1.3395) high-speed steel. J. Mater. Res. Technol. 2020, 9, 13118–13127. [Google Scholar] [CrossRef]
C | Mn | Si | Cr | Mo | V | P | S | Fe |
---|---|---|---|---|---|---|---|---|
0.37 | 0.45 | 1.0 | 5.3 | 1.3 | 0.4 | 0.017 | 0.011 | Res. |
Yield Strength (MPa) | Tensile Strength (MPa) | Elongation A5 (%) | Hardness (HRC) |
---|---|---|---|
1420 | 1680 | 12 | 50 |
Filler Material | Marking According to EN 10025 | C | Cr | Mo | W | V | Co | Fe | Si | Mn | Al | Nb | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HSS23 | 1.3395 | 1.28 | 4.2 | 5.0 | 6.4 | 3.1 | - | Bal. | - | - | - | - | - |
HSS30 | 1.3294 | 1.28 | 4.2 | 5.0 | 6.4 | 3.1 | 8.5 | Bal. | - | - | - | - | - |
DEW Nibasit 625-P | - | 0.025 | 22 | 9 | - | - | 0.01 | 0.5 | 0.4 | 0.7 | 0.02 | 3.3 | Bal. |
First Layer | |
Pulsating direct current: | 110/45 A, with a frequency of 44.4 Hz |
Trajectory: | swing step 3.9 mm (step speed 2.1 mm·s−1) swing length 80 mm (speed 3.1 mm·s−1) |
Serving: | 26.4 g·min−1 |
Second Layer | |
Pulsating direct current: | 140/45 A, with a frequency of 44.4 Hz |
Trajectory: | swing step 5 mm (step speed 4.5 mm·s−1) swing length 80 mm (speed 3.3 mm·s−1) |
Serving: | 27.8 g·min−1 |
Experimental Materials | Sliding Speed (mm/s) | Normal Load (N) | Distance (m) | Coefficient of Friction | Wear Rate ×10−6 (mm3/m·N) |
---|---|---|---|---|---|
Base material | 50 | 20 | 50 | 0.55 ± 0.09 | 33.96 ± 1.2 |
HSS 30 | 50 | 20 | 50 | 0.53 ± 0.04 | 7.6 ± 0.4 |
HSS 23 | 50 | 20 | 50 | 0.56 ± 0.12 | 14.49 ± 0.6 |
Nibasit 625-P | 50 | 20 | 50 | 0.35 ± 0.09 | 21.39 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezinová, J.; Viňáš, J.; Guzanová, A.; Živčák, J.; Brezina, J.; Sailer, H.; Vojtko, M.; Džupon, M.; Volkov, A.; Kolařík, L.; et al. Selected Properties of Hardfacing Layers Created by PTA Technology. Metals 2021, 11, 134. https://doi.org/10.3390/met11010134
Brezinová J, Viňáš J, Guzanová A, Živčák J, Brezina J, Sailer H, Vojtko M, Džupon M, Volkov A, Kolařík L, et al. Selected Properties of Hardfacing Layers Created by PTA Technology. Metals. 2021; 11(1):134. https://doi.org/10.3390/met11010134
Chicago/Turabian StyleBrezinová, Janette, Ján Viňáš, Anna Guzanová, Jozef Živčák, Jakub Brezina, Henrich Sailer, Marek Vojtko, Miroslav Džupon, Andreas Volkov, Ladislav Kolařík, and et al. 2021. "Selected Properties of Hardfacing Layers Created by PTA Technology" Metals 11, no. 1: 134. https://doi.org/10.3390/met11010134
APA StyleBrezinová, J., Viňáš, J., Guzanová, A., Živčák, J., Brezina, J., Sailer, H., Vojtko, M., Džupon, M., Volkov, A., Kolařík, L., Rohan, P., & Puchý, V. (2021). Selected Properties of Hardfacing Layers Created by PTA Technology. Metals, 11(1), 134. https://doi.org/10.3390/met11010134