Influence of Ti Addition on the Strengthening and Toughening Effect in CoCrFeNiTix Multi Principal Element Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure Characterization
3.2. Mechanical Properties
3.3. Effect of Lattice Distortion on Solid Solution Strengthening
3.4. Indentation Fracture Toughness
4. Conclusions
- Based on the CALPHAD method, XRD, and SEM-EDX analysis, the microstructure of CoCrFeNiTix alloys was determined to be FCC + σ + Laves phase for Ti0.7, and σ + Laves + (Cr,Fe)-rich phase for Ti1.0 and Ti1.2.
- As the Ti concentration increased from x = 0.7 to 1.2, the hardness H (or compressive yield strength σy) of the alloy increased from 6.1 to 9.3 GPa (or from 920 to 2160 MPa), whereas its fracture strain decreased from ~18% to ~1.7%.
- Based on our systematic analysis, we believe that in the CoCrFeNiTix HEAs where x = below 0.7, the increase in hardness and yield stress was mainly caused by the solid-solution strengthening of the FCC matrix that resulted from the lattice distortion. With the CoCrFeNiTix HEAs whose x > 0.7, the formation of hard secondary phases (σ, Laves and (Cr,Fe)-rich phases) was the main factor contributing to the strengthening of the alloys.
- The fracture resistance of the CoCrFeNiTix alloys decreased with the increase in Ti contents (from 4.14 for Ti1.0 to 2.79 for Ti1.2). The crack observation revealed that the (Cr,Fe)-rich phase played an important role in enhancing fracture toughness, facilitating toughening mechanisms such as crack deflection and crack bridging.
- Overall, our CoCrFeNiTix (x = 1.0 and 1.2) alloys outperform similar alloy systems due to a combination of superb hardness and good toughness. The present work demonstrates that multi principal element alloys containing dual or multi-phase structures could provide a solution for developing structural alloys with enhanced strength–toughness synergy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinha, A.K. Topologically close-packed structures of transition metal alloys. Prog. Mater. Sci. 1972, 15, 81–185. [Google Scholar] [CrossRef]
- Yurchenko, N.; Stepanov, N.; Salishchev, G. Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 2017, 33, 17–22. [Google Scholar] [CrossRef]
- Yao, M.X.; Wu, J.B.C.; Yick, S.; Xie, Y.; Liu, R. High temperature wear and corrosion resistance of a Laves phase strengthened Co–Mo–Cr–Si alloy. Mater. Sci. Eng. A 2006, 435–436, 78–83. [Google Scholar] [CrossRef]
- Akiba, E.; Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Livingston, J. Laves-phase superalloys? Phys. Status Solidi (a) 1992, 131, 415–423. [Google Scholar] [CrossRef]
- Hall, E.O.; Algie, S.H. The Sigma Phase. Metall. Rev. 1966, 11, 61–88. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wu, W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels. ISRN Metall. 2012, 2012, 732471. [Google Scholar] [CrossRef]
- Marcinkowski, M.; Miller, D. A study of defect sub-structures in the Fe–Cr sigma phase by means of transmission electron microscopy. Philos. Mag. 1962, 7, 1025–1059. [Google Scholar] [CrossRef]
- Davidson, D.; Chan, K. Investigation of Fracture Resistance in Microstructures of Intermetallic Materials for High Temperature Service; Southwest Research Institute: San Antonio, TX, USA, 1995; p. 118. [Google Scholar]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Na, Y.S.; Lim, K.R.; Chang, H.J.; Kim, J. Effect of Trace Additions of Ti on the Microstructure of AlCoCrFeNi-Based High Entropy Alloy. Sci. Adv. Mater. 2016, 8, 1984–1988. [Google Scholar] [CrossRef]
- Yurchenko, N.; Panina, E.; Zherebtsov, S.; Stepanov, N. Design and characterization of eutectic refractory high entropy alloys. Materialia 2021, 16, 101057. [Google Scholar] [CrossRef]
- Panina, E.S.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Mishunin, M.V.; Stepanov, N.D. Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys. Mater. Sci. Eng. A 2020, 786, 139409. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- He, Q.; Yang, Y. On Lattice Distortion in High Entropy Alloys. Front. Mater. 2018, 5, 42. [Google Scholar] [CrossRef]
- Ye, Y.F.; Zhang, Y.H.; He, Q.F.; Zhuang, Y.; Wang, S.; Shi, S.Q.; Hu, A.; Fan, J.; Yang, Y. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 2018, 150, 182–194. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Juan, C.-C.; Sheu, T.-S.; Chen, S.-K.; Yeh, J.-W. Effect of aluminum content on microstructure and mechanical properties of Al x CoCrFeMo 0.5 Ni high-entropy alloys. JOM 2013, 65, 1840–1847. [Google Scholar] [CrossRef]
- Chung, D.; Ding, Z.; Yang, Y. Hierarchical Eutectic Structure Enabling Superior Fracture Toughness and Superb Strength in CoCrFeNiNb0. 5 Eutectic High Entropy Alloy at Room Temperature. Adv. Eng. Mater. 2019, 21, 1801060. [Google Scholar] [CrossRef]
- Niihara, K. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J. Mater. Sci. Lett. 1983, 2, 221–223. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Wu, Q.; Niu, S.; Li, J.; Wang, J.; Liu, C.T. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr. Mater. 2017, 131, 42–46. [Google Scholar] [CrossRef]
- Chen, S.-T.; Tang, W.-Y.; Kuo, Y.-F.; Chen, S.-Y.; Tsau, C.-H.; Shun, T.-T.; Yeh, J.-W. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater. Sci. Eng. A 2010, 527, 5818–5825. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chang, K.-C.; Li, J.-H.; Tsai, R.-C.; Cheng, A.-H. A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 2016, 4, 90–95. [Google Scholar] [CrossRef]
- Jo, Y.H.; Choi, W.M.; Kim, D.G.; Zargaran, A.; Sohn, S.S.; Kim, H.S.; Lee, B.J.; Kim, N.J.; Lee, S. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys. Sci. Rep. 2019, 9, 2948. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; He, Q.; Wang, Q.; Yang, Y. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int. J. Plast. 2018, 106, 57–72. [Google Scholar] [CrossRef]
- Shun, T.-T.; Chang, L.-Y.; Shiu, M.-H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng. A 2012, 556, 170–174. [Google Scholar] [CrossRef]
- Zhang, K.B.; Fu, Z.Y.; Zhang, J.Y.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, Q.J.; Shi, J. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A 2009, 508, 214–219. [Google Scholar] [CrossRef]
- Li, L.; Fang, Q.; Li, J.; Liu, B.; Liu, Y.; Liaw, P.K. Lattice-distortion dependent yield strength in high entropy alloys. Mater. Sci. Eng. A 2020, 784. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Thoma, D.; Chu, F.; Peralta, P.; Kotula, P.; Chen, K.; Mitchell, T. Elastic and mechanical properties of Nb (Cr, V)2 C15 Laves phases. Mater. Sci. Eng. A 1997, 239, 251–259. [Google Scholar] [CrossRef]
- Xue, Y.; Li, S.; Zhong, H.; Fu, H. Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys. Mater. Sci. Eng. A 2015, 638, 340–347. [Google Scholar] [CrossRef]
- Varin, R.A.; Li, G.H. Microstructure and mechanical properties of Mg33−xSixNi67 intermetallic composite alloys. Mater. Sci. Eng. A 1995, 192–193, 59–68. [Google Scholar] [CrossRef]
- Dogan, B.; Schwalbe, K.H. Fracture toughness testing of TiAl base intermetallic alloys. Eng. Fract. Mech. 1997, 56, 155–165. [Google Scholar] [CrossRef]
- Campbell, J.P.; Ritchie, R.O.; Venkateswara Rao, K.T. The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics. Metall. Mater. Trans. A 1999, 30, 563–577. [Google Scholar] [CrossRef]
- Wu, X.; Bowen, P. Effects of microstructure on the fracture toughness of Ti 3 Al-based titanium aluminides. Metall. Mater. Trans. A 1997, 28, 1357–1365. [Google Scholar] [CrossRef]
- Johnson, D.; Chen, X.; Oliver, B.; Noebe, R.; Whittenberger, J. Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl (Cr, Mo) eutectic systems. Intermetallics 1995, 3, 99–113. [Google Scholar] [CrossRef]
- Byun, J.M.; Bang, S.-R.; Park, C.W.; Suk, M.-J.; Do Kim, Y. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation. Met. Mater. Int. 2016, 22, 81–86. [Google Scholar] [CrossRef]
- Chung, D.; Liu, X.; Yang, Y. Fracture of sigma phase containing Co–Cr–Ni–Mo medium entropy alloys. J. Alloys Compd. 2020, 846, 156189. [Google Scholar] [CrossRef]
Alloy | Phase | Vf (%) | Chemical Composition/at% | ||||
---|---|---|---|---|---|---|---|
Co | Cr | Fe | Ni | Ti | |||
Ti0.2 | FCC | 99 | 24.1 ± 1 | 26.0 ± 1 | 24.2 ± 1 | 24.0 ± 1 | 1.7 ± 1 |
σ | 1 | 22.5 ± 1 | 11.7 ± 1 | 15.4 ± 1 | 32.5 ± 1 | 17.9 ± 1 | |
Ti0.3 | FCC | 95.5 | 23.9 ± 1.3 | 25.7 ± 1.2 | 24.0 ± 1.3 | 23.1 ± 1.2 | 3.3 ± 1.2 |
σ | 4.5 | 22.8 ± 1.3 | 12.2 ± 1.5 | 14.5 ± 1.5 | 30.3 ± 1.5 | 20.2 ± 1.2 | |
Ti0.4 | FCC | 86 | 22.2 ± 1.5 | 25.1 ± 1.5 | 24.3 ± 1.5 | 22.8 ± 1.5 | 5.6 ± 1.5 |
σ | 14 | 21.8 ± 2 | 13.2 ± 2 | 15.2 ± 2 | 29.7 ± 2 | 19.5 ± 2 | |
Ti0.7 | FCC | 32 | 21.6 ± 1.5 | 23.5 ± 1.2 | 23.8 ± 2.0 | 21.7 ± 1.5 | 9.4 ± 1.5 |
σ | 26 | 21.4 ± 1.5 | 15.9 ± 1.8 | 16.9 ± 1.5 | 26.2 ± 1.2 | 19.6 ± 1.2 | |
Laves | 46 | 19.5 ± 2.0 | 22.4 ± 2.5 | 14.0 ± 2.0 | 27.0 ± 2.0 | 17.1 ± 2.5 | |
Ti1.0 | σ | 38 | 22.1 ± 1 | 13.0 ± 1 | 18.0 ± 1 | 19.6 ± 1 | 27.3 ± 1 |
Laves | 56 | 18.0 ± 1.5 | 12.0 ± 1.5 | 15.2 ± 1.5 | 32.5 ± 1.5 | 22.3 ± 1.5 | |
(Cr,Fe) rich | 6 | 19.5 ± 1.2 | 27.5 ± 1.2 | 23.0 ± 1.2 | 15.4 ± 1.2 | 16.2 ± 1.2 | |
Ti1.2 | σ | 56 | 20.7 ± 1.5 | 14.4 ± 1.5 | 19.9 ± 1.5 | 16.3 ± 1.5 | 28.7 ± 1.5 |
Laves | 41 | 17.1 ± 1.5 | 13.9 ± 1.5 | 14.5 ± 1.5 | 33.8 ± 1.5 | 20.8 ± 1.5 | |
(Cr,Fe) rich | 3 | 18.0 ± 2 | 26.6 ± 2 | 21.6 ± 2 | 17.3 ± 2 | 16.5 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, D.; Kwon, H.; Eze, C.; Kim, W.; Na, Y. Influence of Ti Addition on the Strengthening and Toughening Effect in CoCrFeNiTix Multi Principal Element Alloys. Metals 2021, 11, 1511. https://doi.org/10.3390/met11101511
Chung D, Kwon H, Eze C, Kim W, Na Y. Influence of Ti Addition on the Strengthening and Toughening Effect in CoCrFeNiTix Multi Principal Element Alloys. Metals. 2021; 11(10):1511. https://doi.org/10.3390/met11101511
Chicago/Turabian StyleChung, Dukhyun, Heounjun Kwon, Chika Eze, Woochul Kim, and Youngsang Na. 2021. "Influence of Ti Addition on the Strengthening and Toughening Effect in CoCrFeNiTix Multi Principal Element Alloys" Metals 11, no. 10: 1511. https://doi.org/10.3390/met11101511
APA StyleChung, D., Kwon, H., Eze, C., Kim, W., & Na, Y. (2021). Influence of Ti Addition on the Strengthening and Toughening Effect in CoCrFeNiTix Multi Principal Element Alloys. Metals, 11(10), 1511. https://doi.org/10.3390/met11101511