Calculation of Thermodynamic Properties of Metals and Their Binary Alloys by the Perturbation Theory
Abstract
:1. Introduction
2. Intermolecular Interaction Potential
3. Modeling the Thermodynamic Parameters of Isothermal Compression of Metals Al and Cu and Their Binary Alloys
3.1. Modeling Isothermal Compression of Aluminum and Copper
3.2. Modelling Isothermal Compression of Binary Al-Cu Alloys
4. Modeling Al and Cu Shock Hugoniot
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borisov, A.A.; Gubin, S.A.; Shargatov, V.A. Applicability of a chemical-equilibrium model to explosion products. Dyn. Detonations Explos. Explos. Phenom. 1991, 134, 138–153. [Google Scholar] [CrossRef]
- Gelfand, B.E.; Gubin, S.A.; Mihalkin, V.N.; Shargatov, V.A. On the calculations of flows with detonation-waves. Khimicheskaya Fizika 1984, 3, 683–690. [Google Scholar]
- Ross, M. The repulsive forces in dense argon. J. Chem. Phys. 1980, 73, 4445–4450. [Google Scholar] [CrossRef]
- Ross, M. A high-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system. J. Chem. Phys. 1979, 71, 1567–1571. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, C.S.; Ree, T.; Ree, F.H. A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 1985, 82, 414–423. [Google Scholar] [CrossRef]
- Henderson, D.; Barker, J.A. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 1967, 47, 4714–4721. [Google Scholar] [CrossRef]
- Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237–5247. [Google Scholar] [CrossRef]
- Zerah, G.; Hansen, J.-P. Self-consistent integral equations for fluid pair distribution functions: Another attempt. J. Chem. Phys. 1986, 84, 2336–2344. [Google Scholar] [CrossRef]
- Fried, L.E.; Howard, W.M. An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen. J. Chem. Phys. 1998, 109, 7338–7349. [Google Scholar] [CrossRef]
- Gubin, S.A.; Victorov, S.B. The accuracy of the theories based on statistical physics for the thermodynamic modeling of state parameters of dense pure gases (fluids). J. Phys. Conf. Ser. 2019, 1205, 012020. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Shen, J.; Zeng, Z.; Park, J.M.; Choi, Y.T.; Schell, N.; Maawad, E.; Zhou, N.; Kim, H.S. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scr. Mater. 2022, 206, 114219. [Google Scholar] [CrossRef]
- Conde, F.F.; Escobar, J.D.; Oliveira, J.P.; Béreš, M.; Jardini, A.L.; Bose, W.W.; Avila, J.A. Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel. Mater. Sci. Eng. A 2019, 758, 192–201. [Google Scholar] [CrossRef]
- Escobar, J.D.; Poplawsky, J.D.; Faria, G.A.; Rodriguez, J.; Oliveira, J.P.; Salvador, C.A.F.; Mei, P.R.; Babu, S.S.; Ramirez, A.J. Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Mater. Des. 2018, 140, 95–105. [Google Scholar] [CrossRef]
- Victorov, S.B.; El-Rabii, H.; Gubin, S.A.; Maklashova, I.V.; Bogdanova, Y.A. An accurate equation-of-state model for thermodynamic calculations of chemically reactive carbon-containing systems. J. Energ. Mater. 2010, 28, 35–49. [Google Scholar] [CrossRef]
- Victorov, S.B.; Gubin, S.A. Thermodynamic Modeling of Complicated Chemical Systems at High Pressures and Temperatures; NRNU MEPhI: Moscow, Russia, 2016. (In Russian) [Google Scholar]
- Bogdanova, Y.A.; Gubin, S.A.; Victorov, S.B.; Gubina, T.V. Theoretical model of the equation of state of a two-component fluid with the Exp-6 potential based on perturbation theory. High Temp. 2015, 53, 481–490. [Google Scholar] [CrossRef]
- Zhang, S.; Morales, M.A. First-principles equations of state and structures of liquid metals in multi-megabar conditions. AIP Conf. Proc. 2020, 2272, 090004. [Google Scholar] [CrossRef]
- Dai, J.; He, D.; Song, Y. Correlations of Equilibrium Properties and Electronic Structure of Pure Metals. Materials 2019, 12, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalnuntluanga, C.; Mishra, R.K. Temperature effect on structural and transport coefficient of liquid copper under square-well interaction. AIP Conf. Proc. 2021, 2327, 020043. [Google Scholar] [CrossRef]
- Dubinin, N.E.; Vatolin, N.A.; Filippov, V.V. Thermodynamic perturbation theory in studies of metal melts. Russian Chem. Rev. 2014, 83, 987–1002. [Google Scholar] [CrossRef]
- Dubinin, N.E.; Yuryev, A.A.; Vatolin, N.A. Straightforward calculation of the WCA entropy and internal energy for liquid metals. Thermochim. Acta 2011, 518, 9–12. [Google Scholar] [CrossRef]
- Bogdanova, Y.A.; Maklashova, I.V.; Gubin, S.A.; Amir, Z.A. The influence of type of the intermolecular interaction potential on transport properties of helium. J. Phys. Conf. Ser. 2020, 1686, 012075. [Google Scholar] [CrossRef]
- Bogdanova, Y.A.; Gubin, S.A.; Amir, Z.A. Modeling of Thermophysical Properties and Transport Properties of Basic Combustion Products of Organic Substances. Phys. Atom. Nucl. 2020, 83, 1563–1568. [Google Scholar] [CrossRef]
- Selezenev, A.A.; Aleynikov, A.Y.; Gantchuk, N.S.; Yermakov, P.V.; Labanowski, J.K.; Korkin, A.A. SageMD: Molecular-dynamic software package to study properties of materials with different models for interatomicinteractions. Comput. Mater. Sci. 2003, 28, 107–124. [Google Scholar] [CrossRef]
- MCCCS Towhee. Available online: http://towhee.sourceforge.net (accessed on 5 September 2005).
- Martin, M.G. MCCCS Towhee: A tool for Monte Carlo molecular simulation. Mol. Simulat. 2013, 39, 1212–1222. [Google Scholar] [CrossRef]
- Gubin, S.A.; Maklashova, I.V.; Melnikova, K.S. The thermophysical and mechanical properties of a composite of aluminum and aluminum oxide-based additive mixing model. Combust. Explos. 2012, 5, 297–301. (In Russian) [Google Scholar]
- Murnagan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaboya, S.N.; Kennedy, G.C. Compressibility of 18 metals to 45 kbar. J. Phys. Chem. Solids 1970, 31, 2329–2345. [Google Scholar] [CrossRef]
- Syassen, K.; Holzapfel, W.B. Isotermal compression of Al and Ag to 120 kbar. J. Appl. Phys. 1978, 49, 4427–4430. [Google Scholar] [CrossRef]
- Mao, H.K.; Bell, P.M. Specific volume measurement of Cu, Mo, Pd and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 1978, 49, 3276–3283. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B. 2004, 70, 094112. [Google Scholar] [CrossRef] [Green Version]
- Litygina, L.M.; Malyushtskaya, Z.V.; Pashkina, T.A.; Kabalkina, S.S. Isotermal compression of Al to 10 GPa at 673 K. Phys. Stat. Sol. Ser. A 1982, 69, 147–150. [Google Scholar] [CrossRef]
- Dziedzic, J.; Winczewski, S.; Rybicki, J. Structure and properties of liquid Al–Cu alloys: Empirical potentials compared. Comput. Mater. Sci. 2016, 114, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Kramer, M.J.; Xu, M.; Wu, S.; Hao, S.G.; Sordelet, D.J.; Ho, K.M.; Wang, C.Z. Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy. Phys. Rev. B. 2009, 79, 144205. [Google Scholar] [CrossRef]
- Gubin, S.A.; Maklashova, I.V.; Selezenev, A.A.; Kozlova, S.A.; Demidenko, T.S. Molecular dynamics simulation and visualization of melting aluminum crystal in shock wave. Sci. Vis. 2014, 6, 14–23. [Google Scholar]
- Gubin, S.A.; Maklashova, I.V.; Selezenev, A.A.; Kozlova, S.A. Molecular-Dynamics Study Melting Aluminum at High Pressures. Phys. Procedia 2015, 72, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Gubin, S.A.; Maklashova, I.V. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state. J. Phys. Conf. Ser. 2018, 946, 012098. [Google Scholar] [CrossRef]
- Marsh, S.P. (Ed.) LASL Shock Hugoniot Data; University California Press: Berkeley, CA, USA, 1980. [Google Scholar]
- Mitchell, A.C.; Nellis, W.J. Shock compression of aluminum, copper and tantalum. J. Appl. Phys. 1981, 52, 3363–3374. [Google Scholar] [CrossRef]
- Trunin, R.F.; Gudarenko, L.F.; Zhernokletov, M.V.; Simakov, G.V. Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances; RFNC: Sarov, Russia, 2001. (In Russian) [Google Scholar]
- Al'tshule, L.V.; Kormer, S.B.; Brazhnik, M.I.; Vladimirov, L.A.; Speranskaya, M.P.; Funtikov, A.I. The isentropic compressibility of aluminum, copper, lead at high pressures. Zh. Eksp. Teor. Fiz. 1960, 38, 1061–1073. [Google Scholar]
- Isbell, W.H.; Shipman, F.H.; Jones, A.H. Hugoniot Equation of State Measurements for Eleven Materials to Five Megabars; Report MSL-68-13; General Motors Corp., Mat. Sci. Lab.: Warren, MI, USA, 1968. [Google Scholar]
- Van Thiel, M. (Ed.) Compendium of Shock Wave Data; Report UCRL-50108; Lawrence Livermore Laboratory: Livermore, CA, USA, 1977. [Google Scholar]
Metal | ε/kB, K | rm, Ǻ | α, 1/Ǻ |
---|---|---|---|
Al | 3083 | 3.20 | 1.21 |
Cu | 2417 | 2.71 | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanova, Y.A.; Gubin, S.A.; Maklashova, I.V. Calculation of Thermodynamic Properties of Metals and Their Binary Alloys by the Perturbation Theory. Metals 2021, 11, 1548. https://doi.org/10.3390/met11101548
Bogdanova YA, Gubin SA, Maklashova IV. Calculation of Thermodynamic Properties of Metals and Their Binary Alloys by the Perturbation Theory. Metals. 2021; 11(10):1548. https://doi.org/10.3390/met11101548
Chicago/Turabian StyleBogdanova, Youlia Andreevna, Sergey Aleksandrovich Gubin, and Irina Vladimirovna Maklashova. 2021. "Calculation of Thermodynamic Properties of Metals and Their Binary Alloys by the Perturbation Theory" Metals 11, no. 10: 1548. https://doi.org/10.3390/met11101548
APA StyleBogdanova, Y. A., Gubin, S. A., & Maklashova, I. V. (2021). Calculation of Thermodynamic Properties of Metals and Their Binary Alloys by the Perturbation Theory. Metals, 11(10), 1548. https://doi.org/10.3390/met11101548