Environmental Fatigue Assessment of Metallic Materials and Components
1. Introduction and Scope
2. Contributions
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cicero, S.; Metais, T.; Voloshyna, Y.; Cuvillez, S.; Arrieta, S.; Cicero, R. Environmental Fatigue Analysis of Nuclear Structural Components: Assessment Procedures, Loads, and a Case Study. Metals 2020, 10, 609. [Google Scholar] [CrossRef]
- Vankeerberghen, M.; De Smet, M.; Malekian, C. Gauge-Strain-Controlled Air and PWR Fatigue Life Data for 304 Stainless Steel—Some Effects of Surface Finish and Hold Time. Metals 2020, 10, 1248. [Google Scholar] [CrossRef]
- Spätig, P.; Le Roux, J.-C.; Bruchhausen, M.; Mottershead, K. Mean Stress Effect on the Fatigue Life of 304L Austenitic Steel in Air and PWR Environments Determined with Strain- and Load-Controlled Experiments. Metals 2021, 11, 221. [Google Scholar] [CrossRef]
- Simonovski, I.; Mclennan, A.; Mottershead, K.; Gill, P.; Platts, N.; Bruchhausen, M.; Waters, J.L.; Vankeerberghen, M.; Moreno, G.B.; Gomez, S.A.; et al. Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment. Metals 2021, 11, 376. [Google Scholar] [CrossRef]
- Gourdin, C.; Perez, G.; Dhahri, H.; De Baglion, L.; Le Roux, J.-C. Environmental Effect on Fatigue Crack Initiation under Equi-Biaxial Loading of an Austenitic Stainless Steel. Metals 2021, 11, 203. [Google Scholar] [CrossRef]
- Bruchhausen, M.; Dundulis, G.; McLennan, A.; Arrieta, S.; Austin, T.; Cicero, R.; Chitty, W.-J.; Doremus, L.; Ernestova, M.; Grybenas, A.; et al. Characterization of Austenitic Stainless Steels with Regard to Environmentally Assisted Fatigue in Simulated Light Water Reactor Conditions. Metals 2021, 11, 307. [Google Scholar] [CrossRef]
- Shao, X.; Xie, H.; Zhang, Y.; Xiong, F.; Bai, X.; Jiang, L.; Kan, Q. Investigation on Analysis Method of Environmental Fatigue Correction Factor of Primary Coolant Metal Materials in LWR Water Environment. Metals 2021, 11, 233. [Google Scholar] [CrossRef]
- Engler, C.T.; Klapper, H.S.; Oechsner, M. On the Influence of the Microstructure upon the Fatigue and Corrosion Fatigue Behavior of UNS N07718. Metals 2021, 11, 117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicero, S.; Bruchhausen, M. Environmental Fatigue Assessment of Metallic Materials and Components. Metals 2021, 11, 1565. https://doi.org/10.3390/met11101565
Cicero S, Bruchhausen M. Environmental Fatigue Assessment of Metallic Materials and Components. Metals. 2021; 11(10):1565. https://doi.org/10.3390/met11101565
Chicago/Turabian StyleCicero, Sergio, and Matthias Bruchhausen. 2021. "Environmental Fatigue Assessment of Metallic Materials and Components" Metals 11, no. 10: 1565. https://doi.org/10.3390/met11101565
APA StyleCicero, S., & Bruchhausen, M. (2021). Environmental Fatigue Assessment of Metallic Materials and Components. Metals, 11(10), 1565. https://doi.org/10.3390/met11101565