Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Evolution
3.1.1. As-Cast Microstructure
3.1.2. Deformation Microstructure after ECAP
3.1.3. Microstructural Evolution during Post-ECAP Annealing
3.2. Texture Evolution
3.3. Mechanical Properties
4. Conclusions
- (1)
- Only recovery occurs upon annealing at ≈200 °C for 2 h, while the coarsening of UFG grains are depressed. In contrast to severely deformed commercial purity Al and the binary Al-8Bi alloys, the present 5P Al-8Zn and Al-6Bi-8Zn alloys show a more stable thermal stability. It can be mainly ascribed to the retarded GB migration due to the Zener pinning effect of pre-existing fine Zn particles dynamically precipitated along GBs.
- (2)
- ECAP texture of the 5P Al-8Zn and Al-6Bi-8Zn alloys remain stable upon annealing at 200 as a result of the stable grain structure.
- (3)
- Annealing at 200 °C leads to a reduction in the strength of 5P Al-8Zn and Al-6Bi-8Zn alloys, while the uniform elongations are much improved, reaching ≈24.6% and ≈24.8%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Design 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Aryshenskii, E.V.; Hirsch, J.; Konovalov, S.V.; Prahl, U. Specific Features of Microstructural Evolution During Hot Rolling of the As-Cast Magnesium-Rich Aluminum Alloys with Added Transition Metal Elements. Metall. Mater. Trans. A 2019, 50, 5782–5799. [Google Scholar] [CrossRef]
- Jia, H.L.; Bjørge, R.; Cao, L.F.; Song, H.; Marthinsen, K.; Li, Y.J. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy. Acta Mater. 2018, 155, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.L.; Bjørge, R.; Marthinsen, K.; Li, Y.J. The deformation and work hardening behaviour of a SPD processed Al-5Cu alloy. J. Alloys Compd. 2017, 697, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.L.; Bjørge, R.; Marthinsen, K.; Mathiesen, R.H.; Li, Y.J. Soft particles assisted grain refinement and strengthening of an Al-Bi-Zn alloy subjected to ECAP. Mater. Sci. Eng. A 2017, 703, 304–313. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Shipilova, K.; Musin, F.; Motohashi, Y. Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A 2005, 396, 341–351. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, S.; Trimby, P.W.; Liao, X.; Murashkin, M.Y.; Valiev, R.Z.; Liu, J.; Cairney, J.M.; Ringer, S.P.; Sha, G. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 2019, 162, 19–32. [Google Scholar] [CrossRef]
- Gil Sevillano, J.; Aldazabal, J. Ductilization of nanocrystalline materials for structural applications. Scr. Mater. 2004, 51, 795–800. [Google Scholar] [CrossRef]
- Lian, J.; Valiev, R.Z.; Baudelet, B. On the enhanced grain growth in ultrafine grained metals. Acta Metall. Mater. 1995, 43, 4165–4170. [Google Scholar] [CrossRef]
- Wang, J.; Iwahashi, Y.; Horita, Z.; Furukawa, M.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G. An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size. Acta Mater. 1996, 44, 2973–2982. [Google Scholar] [CrossRef]
- Karelin, R.D.; Khmelevskaya, I.Y.; Komarov, V.S.; Andreev, V.A.; Perkas, M.M.; Yusupov, V.S.; Prokoshkin, S.D. Effect of Quasi-Continuous Equal-Channel Angular Pressing on Structure and Properties of Ti-Ni Shape Memory Alloys. J. Mater. Eng. Perform. 2021, 30, 3096–3106. [Google Scholar] [CrossRef]
- Jia, H.L.; Marthinsen, K.; Li, Y.J. Effect of soft Bi particles on grain refinement during severe plastic deformation. Trans. Nonferr. Met. Soc. China 2017, 27, 971–976. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Wang, J.; Horita, Z.; Nemoto, M.; Langdon, T.G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 1996, 35, 143–146. [Google Scholar] [CrossRef]
- Furukawa, M.; Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng. A 1998, 257, 328–332. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 1997, 45, 4733–4741. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998, 46, 3317–3331. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Shaeri, M.H.; Shaeri, M.; Ebrahimi, M.; Salehi, M.T.; Seyyedein, S.H. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog. Nat. Sci. 2016, 26, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Shaeri, M.H.; Salehi, M.T.; Seyyedein, S.H.; Abutalebi, M.R.; Park, J.K. Characterization of microstructure and deformation texture during equal channel Angular pressing of Al–Zn–Mg–Cu alloy. J. Alloys Compd. 2013, 576, 350–357. [Google Scholar] [CrossRef]
- Muñoz-Morris, M.A.; Gutierrez-Urrutia, I.; Morris, D.G. Effect of equal channel angular pressing on strength and ductility of Al–TiAl composites. Mater. Sci. Eng. A 2005, 396, 3–10. [Google Scholar] [CrossRef]
- Zha, M.; Yu, Z.Y.; Qian, F.; Wang, H.Y.; Li, Y.J.; Mathiesen, R.H.; Roven, H.J. Achieving dispersed fine soft Bi particles and grain refinement in a hypermonotectic Al–Bi alloy by severe plastic deformation and annealing. Scr. Mater. 2018, 155, 124–128. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Li, S.; Beyerlein, I.J.; Bourke, M.A.M. Texture formation during equal channel angular extrusion of fcc and bcc materials: Comparison with simple shear. Mater. Sci. Eng. A 2005, 394, 66–77. [Google Scholar] [CrossRef]
- Bowen, J.R. Strength and structure in commercial purity aluminium after large strain. Mater. Sci. Eng. A 2008, 483–484, 231–234. [Google Scholar] [CrossRef]
- Zheng, L.J.; Chen, C.Q.; Zhou, T.T.; Liu, P.Y.; Zeng, M.G. Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment. Mater. Charact. 2002, 49, 455–461. [Google Scholar] [CrossRef]
Material (wt. %) | Yield Strength (YS) (0.2% Offset) [MPa] | Ultimate Tensile Stress (UTS) [MPa] | Uniform Elongation (UE) [%] | Elongation to Failure (EF) [%] |
---|---|---|---|---|
Al-8Zn (as-cast) | 66 ± 2 | 130 ± 4 | 26.0 ± 0.5 | 51.5 ± 1 |
Al-8Zn (5P) | 199 ± 4 | 221 ± 5 | 2.2 ± 0.2 | 37.5 ± 0.6 |
Al-8Zn (5P + 96 h) | 106 ± 2 | 146 ± 3 | 24.6 ± 0.4 | 60.3 ± 0.3 |
Al-6Bi-8Zn (as-cast) | 63 ± 3 | 118 ± 3 | 22.0 ± 0.3 | 48.4 ± 0.8 |
Al-6Bi-8Zn (5P) | 211 ± 4 | 238 ± 4 | 2.3 ± 0.2 | 6.0 ± 0.3 |
Al-8Zn (as-cast) | 99 ± 2 | 133 ± 3 | 24.8 ± 0.3 | 57.2 ± 0.4 |
Al-8Zn (as-cast) | 66 ± 2 | 130 ± 4 | 26.0 ± 0.5 | 51.5 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Piao, Y.; Zhu, K.; Yin, C.; Zhou, W.; Li, F.; Zha, M. Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP. Metals 2021, 11, 2043. https://doi.org/10.3390/met11122043
Jia H, Piao Y, Zhu K, Yin C, Zhou W, Li F, Zha M. Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP. Metals. 2021; 11(12):2043. https://doi.org/10.3390/met11122043
Chicago/Turabian StyleJia, Hailong, Yinan Piao, Kaining Zhu, Chaoran Yin, Wenqiang Zhou, Feng Li, and Min Zha. 2021. "Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP" Metals 11, no. 12: 2043. https://doi.org/10.3390/met11122043
APA StyleJia, H., Piao, Y., Zhu, K., Yin, C., Zhou, W., Li, F., & Zha, M. (2021). Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP. Metals, 11(12), 2043. https://doi.org/10.3390/met11122043