Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Methods
2.2.1. Flotation
2.2.2. Surface Cleaning of Sample A
2.2.3. Leachability Test of Sample A with DI Water
3. Results and Discussion
3.1. Effect of Sodium Sulfite on the Separation of Chalcopyrite and Sphalerite in the Flotation of Sample A
3.2. Leachability Test of Sample A with DI Water
3.3. Effect of Surface Cleaning Pretreatment Using EDTA on the Separation of Chalcopyrite and Sphalerite in the Flotation of Sample A
3.4. Suppression of Lead-Activated Sphalerite by Zinc Sulfate after EDTA Washing
4. Conclusions
- The obtained SMS ore sample contains CuFeS2, ZnS, FeS2, SiO2, and BaSO4 in addition to PbS and PbSO4 as Pb minerals. Not only these minerals but soluble compounds which release Cu2+, Zn2+, Pb2+, and Fe2+/3+ are also contained in the sample.
- When anglesite co-existed, lead activation of sphalerite occurred, which made the floatability of sphalerite increase.
- In the flotation of sample A with sodium sulfite as a depressant for Zn- and Fe-minerals, the floatability of pyrite could be suppressed, while it was not able to depress the floatability of sphalerite because Pb2+ released from anglesite and other soluble compounds activated sphalerite.
- Surface cleaning using EDTA was effective in removing anglesite and improving the recovery of chalcopyrite by dissolving secondary products formed via natural oxidation processes. However, sphalerite was floated together with chalcopyrite, even after EDTA washing.
- The proposed flotation procedure of SMS ores, a combination of surface cleaning with EDTA to improve chalcopyrite floatability and remove anglesite and the depression of lead-activated sphalerite by using zinc sulfate, could achieve high separation efficiency of chalcopyrite and sphalerite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boschen, R.E.; Rowden, A.A.; Clark, M.R.; Gardner, J.P.A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 2013, 84, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulfides at the modern seafloor a review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- Halbach, P.; Pracejus, B.; Maerten, A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ. Geol. 1993, 88, 2210–2225. [Google Scholar] [CrossRef]
- Janecky, D.R.; Seyfried, W.E. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim. Cosmochim. Acta 1984, 48, 2723–2738. [Google Scholar] [CrossRef]
- Leybourne, M.I.; de Ronde, C.E.J.; Wysoczanski, R.J.; Walker, S.L.; Timm, C.; Gibson, H.L.; Layton-Matthews, D.; Baker, E.T.; Clark, M.R.; Tontini, F.C.; et al. Geology, Hydrothermal Activity, and Sea-Floor Massive Sulfide Mineralization at the Rumble II West Mafic Caldera. Econ. Geol. 2012, 107, 1649–1668. [Google Scholar] [CrossRef]
- German, C.R.; Petersen, S.; Hannington, M.D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming? Chem. Geol. 2016, 420, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Monecke, T.; Petersen, S.; Hannington, M.D. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings. Econ. Geol. 2014, 109, 2079–2101. [Google Scholar] [CrossRef]
- Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S. Development of vertical cable seismic (VCS) system for seafloor massive sulfide (SMS). In Proceedings of the 2014 Oceans—St. John’s, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–7. [Google Scholar]
- Fallon, E.K.; Niehorster, E.; Brooker, R.A.; Scott, T.B. Experimental leaching of massive sulphide from TAG active hydrothermal mound and implications for seafloor mining. Mar. Pollut. Bull. 2018, 126, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Fuchida, S.; Ishibashi, J.; Shimada, K.; Nozaki, T.; Kumagai, H.; Kawachi, M.; Matsushita, Y.; Koshikawa, H. Onboard experiment investigating metal leaching of fresh hydrothermal sulfide cores into seawater. Geochem. Trans. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, L.; Li, H.; Wang, N. Electrochemical Study of Galena Weathering in NaCl Solution: Kinetics and Environmental Implications. Minerals 2020, 10, 416. [Google Scholar] [CrossRef]
- Collins, P.C.; Croot, P.; Carlsson, J.; Colaço, A.; Grehan, A.; Hyeong, K.; Kennedy, R.; Mohn, C.; Smith, S.; Yamamoto, H.; et al. A primer for the Environmental Impact Assessment of mining at seafloor massive sulfide deposits. Mar. Policy 2013, 42, 198–209. [Google Scholar] [CrossRef]
- Narita, T.; Oshika, J.; Toyohara, T.; Okamoto, N.; Shirayama, Y. The Environmental Impact Assessment for Mining Seafloor Massive Sulphides in Japan. J. MMIJ 2015, 131, 634–638. [Google Scholar] [CrossRef]
- Van Dover, C.L. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Mar. Environ. Res. 2014, 102, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Economic, Trade and Industry (METI); Japan Oil, Gas and Metals National Corporation (JOGMEC). Summary Report on Comprehensive Evaluations of Development Plan of Seafloor Massive Sulfide Deposits. Available online: http://www.jogmec.go.jp/content/300359550.pdf (accessed on 26 January 2021).
- Oki, T.; Nishisu, Y.; Hoshino, M. Characteristics of The Existing Mineral Phases of Japanese Submarine Hydrothermal Polymetallic Sulfides and Their Influence on Respective Mineral Processing Properties. J. MMIJ 2015, 131, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Masuda, N. Challenges toward the sea-floor massive sulfide mining with more advanced technologies. In Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 5–8 April 2011; pp. 1–4. [Google Scholar]
- Woodcock, J.T.; Sparrow, G.J.; Bruckard, W.J.; Johnson, N.W.; Dunne, R. Plant Practice: Sulfide Minerals and Precious Metals. In Froth Flotation a Century of Innovation; Fuerstenau, M., Jameson, G., Yoon, R.H., Eds.; SME: Littleton, CO, USA, 2007; pp. 781–843. ISBN 978-0-873-35252-9. [Google Scholar]
- Houot, R.; Raveneau, P. Activation of sphalerite flotation in the presence of lead ions. Int. J. Miner. Process. 1992, 35, 253–271. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Liu, Q.; Zhan, Y. Sphalerite activation: Flotation and electrokinetic studies. Miner. Eng. 1997, 10, 787–802. [Google Scholar] [CrossRef]
- Rashchi, F.; Sui, C.; Finch, J.A. Sphalerite activation and surface Pb ion concentration. Int. J. Miner. Process. 2002, 67, 43–58. [Google Scholar] [CrossRef]
- Trahar, W.J.; Senior, G.D.; Heyes, G.W.; Creed, M.D. The activation of sphalerite by lead—A flotation perspective. Int. J. Miner. Process. 1997, 49, 121–148. [Google Scholar] [CrossRef]
- Wang, H.; Wen, S.; Han, G.; Xu, L.; Feng, Q. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate. Miner. Eng. 2020, 146, 106132. [Google Scholar] [CrossRef]
- El-Shall, H.E.; Elgillani, D.A.; Abdel-Khalek, N.A. Role of zinc sulfate in depression of lead-activated sphalerite. Int. J. Miner. Process. 2000, 58, 67–75. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Metzger, P.H.; Fuerstenau, D.W.; Metzger, P.H. Activation of sphalerite with lead ions in the presence of zinc salts. Trans. Am. Inst. Min. Metall. Eng. 1960, 217, 119–123. [Google Scholar]
- Cao, Q.; Cheng, J.; Feng, Q.; Wen, S.; Luo, B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technol. 2017, 311, 390–397. [Google Scholar] [CrossRef]
- Clarke, P.; Fornasiero, D.; Ralston, J.; Smart, R.S.C. A study of the removal of oxidation products from sulfide mineral surfaces. Miner. Eng. 1995, 8, 1347–1357. [Google Scholar] [CrossRef]
- Fuerstenau, M.C.; Olivas, S.A.; Herrera-Urbina, R.; Han, K.N. The surface characteristics and flotation behavior of anglesite and cerussite. Int. J. Miner. Process. 1987, 20, 73–85. [Google Scholar] [CrossRef]
- Rashchi, F.; Dashti, A.; Arabpour-Yazdi, M.; Abdizadeh, H. Anglesite flotation: A study for lead recovery from zinc leach residue. Miner. Eng. 2005, 18, 205–212. [Google Scholar] [CrossRef]
- Wills, B.A.; Napier-Munn, T.J. Froth flotation. In Mineral Processing Technology, 8th ed.; Elsevier: Oxford, UK, 2016; pp. 265–380. ISBN 978-0-08-097053-0. [Google Scholar]
- Ball, J.W.; Nordstrom, D.K. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Text Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters; USGS Numbered Series Open-File Report 91-183; U.S. Geological Survey: Reston, VA, USA, 1991; p. 37. [Google Scholar] [CrossRef]
- Aikawa, K.; Ito, M.; Segawa, T.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores. Miner. Eng. 2020, 152, 106367. [Google Scholar] [CrossRef]
- Seal, R.R.; Foley, N.K. Progress on Geoenvironmental Models for Selected Mineral Deposit Types; USGS Numbered Series Open-File Report 02-195; U.S. Geological Survey: Reston, VA, USA, 2002; pp. 196–212. [Google Scholar] [CrossRef]
- Fuchida, S.; Ishibashi, J.; Nozaki, T.; Matsushita, Y.; Kawachi, M.; Koshikawa, H. Metal Mobility from Hydrothermal Sulfides into Seawater During Deep Seafloor Mining Operations. In Environmental Issues of Deep-Sea Mining; Sharma, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 213–229. ISBN 978-3-030-12695-7. [Google Scholar]
- Senior, G.D.; Trahar, W.J. The influence of metal hydroxides and collector on the flotation of chalcopyrite. Int. J. Miner. Process. 1991, 33, 321–341. [Google Scholar] [CrossRef]
- Kant, C.; Rao, S.R.; Finch, J.A. Distribution of surface metal ions among the products of chalcopyrite flotation. Miner. Eng. 1994, 7, 905–916. [Google Scholar] [CrossRef]
- Park, I.; Hong, S.; Jeon, S.; Ito, M.; Hiroyoshi, N. A Review of Recent Advances in Depression Techniques for Flotation Separation of Cu–Mo Sulfides in Porphyry Copper Deposits. Metals 2020, 10, 1269. [Google Scholar] [CrossRef]
- Park, I.; Hong, S.; Jeon, S.; Ito, M.; Hiroyoshi, N. Flotation Separation of Chalcopyrite and Molybdenite Assisted by Microencapsulation Using Ferrous and Phosphate Ions: Part I. Selective Coating Formation. Metals 2020, 10, 1667. [Google Scholar] [CrossRef]
- Bicak, O. A technique to determine ore variability in a sulphide ore. Miner. Eng. 2019, 142, 105927. [Google Scholar] [CrossRef]
- Grano, S.R.; Ralston, J.; Johnson, N.W. Characterization and treatment of heavy medium slimes in the Mt. Isa mines lead-zinc concentrator. Miner. Eng. 1988, 1, 137–150. [Google Scholar] [CrossRef]
- Rumball, J.A.; Richmond, G.D. Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA. Int. J. Miner. Process. 1996, 48, 1–20. [Google Scholar] [CrossRef]
- Basilio, C.; Kartio, I.; Yoon, R.-H. Lead activation of sphalerite during galena flotation. Miner. Eng. 1996, 9, 869–879. [Google Scholar] [CrossRef]
- Helgeson, H.C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 1969, 267, 729–804. [Google Scholar] [CrossRef]
- Latimer, W.M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1952; pp. 72, 152, 169. ISBN 978-0-758-15876-5. [Google Scholar]
- Leckie, J.O.; James, R.O. Aqueous Environmental Chemistry of Metals; Rubin, A.J., Ed.; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1974; pp. 1–76. ISBN 978-0-250-40060-7. [Google Scholar]
Sample | Mass Fraction (%) | ||||||
---|---|---|---|---|---|---|---|
Cu | Zn | Pb | Fe | S | Si | Ba | |
Sample A | 7.4 | 13.6 | 7.1 | 24.5 | 35.7 | 3.5 | 1.5 |
Chalcopyrite | 24.5 | 0.7 | - | 34.1 | 26.0 | 8.8 | - |
Sphalerite | - | 66.5 | 0.1 | 3.5 | 24.8 | 2.7 | - |
Galena | - | - | 84.8 | - | 8.3 | 1.5 | - |
Anglesite | 1.3 | 0.7 | 88.0 | 0.2 | 7.6 | 0.7 | - |
Pyrite | - | - | - | 42.3 | 52.5 | 1.0 | - |
Barite | - | - | - | - | 17.9 | 0.3 | 67.8 |
Mass Fraction (%) | |||||
---|---|---|---|---|---|
CuFeS2 | ZnS | PbS | FeS2 | SiO2 | BaSO4 |
21.7 | 20.6 | 8.4 | 39.2 | 7.5 | 2.6 |
Concentration (ppm) | Final pH | |||
---|---|---|---|---|
Cu | Zn | Pb | Fe | |
- | 20 | 38 | - | 5.12 |
Concentration (ppm) | |||
---|---|---|---|
Cu | Zn | Pb | Fe |
9 | 137 | 3200 | 6 |
Reference | ||
---|---|---|
1.9 × 10−26 | 2.7 × 10−29 | Helgeson (1969) [44] |
7.2 × 10−26 | 6.8 × 10−29 | Latimer (1952) [45] |
7.1 × 10−26 | 6.3 × 10−29 | Leckie & James (1974) [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aikawa, K.; Ito, M.; Kusano, A.; Park, I.; Oki, T.; Takahashi, T.; Furuya, H.; Hiroyoshi, N. Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite. Metals 2021, 11, 253. https://doi.org/10.3390/met11020253
Aikawa K, Ito M, Kusano A, Park I, Oki T, Takahashi T, Furuya H, Hiroyoshi N. Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite. Metals. 2021; 11(2):253. https://doi.org/10.3390/met11020253
Chicago/Turabian StyleAikawa, Kosei, Mayumi Ito, Atsuhiro Kusano, Ilhwan Park, Tatsuya Oki, Tatsuru Takahashi, Hisatoshi Furuya, and Naoki Hiroyoshi. 2021. "Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite" Metals 11, no. 2: 253. https://doi.org/10.3390/met11020253
APA StyleAikawa, K., Ito, M., Kusano, A., Park, I., Oki, T., Takahashi, T., Furuya, H., & Hiroyoshi, N. (2021). Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite. Metals, 11(2), 253. https://doi.org/10.3390/met11020253