Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Low Cycle Fatigue Tests
2.3. Cyclic Stress–Strain Response
2.4. Short Crack Growth Measurement
2.5. Fractography
3. Results and Discussion
3.1. Optimization of the Fatigue Crack Front Shape during Crack Propagation
Young’s Modulus E [GPa] | Poisson’s Ratio υ | Proof Yield Strength Rp0.2 [MPa] | Ultimate Tensile Strength Rm [MPa] | Elongation at Break [%] | |
---|---|---|---|---|---|
Sanicro 25 [32] | 185 | 0.3 | 375 | 787 | 49 |
304L | 201 | 0.3 | 236 | 651 | 83 |
3.2. Description of Short Fatigue Crack Growth Rate Based on J-Integral
3.3. Residual Fatigue Lifetime Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mat. Sci. Eng. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Chai, G.; Forsberg, U. 12—Sanicro 25: An advanced high-strength, heat-resistant austenitic stainless steel. In Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, 1st ed.; Di Gianfrancesco, A., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 391–421. [Google Scholar]
- Suo, J.; Peng, Z.; Yang, H.; Chai, G.; Yu, M. Formation of Laves Phase in Sanicro 25 Austenitic Steel During Creep-Rupture Test at 700 °C. Met. Mic. and Anal. 2019, 8, 281–286. [Google Scholar] [CrossRef]
- Rautio, R.; Bruce, S. Alloy for ultrasupercritical coal fired boilers. Adv. Mater. Process. 2008, 166, 35–37. [Google Scholar]
- Krupp, U.; Alvarez-Armas, I. Short fatigue crack propagation during low-cycle, high cycle and very-high-cycle fatigue of duplex steel—An unified approach. Int. J. Fatigue 2014, 65, 78–85. [Google Scholar] [CrossRef]
- Tomkins, B. Fatigue crack propagation—an analysis. Philos. Mag. 1968, 18, 1041–1066. [Google Scholar] [CrossRef]
- Skelton, R. The prediction of crack growth rates from total endurance in high strain fatigue. Fat. Frac. Eng. Mat. Struct. 1979, 2, 305–318. [Google Scholar] [CrossRef]
- Skelton, R. The prediction of crack growth rates from total endurances in high strain fatigue-thirty years on. Fat. Frac. Eng. Mat. Struct. 2009, 32, 81–83. [Google Scholar] [CrossRef]
- Polák, J. Plastic strain-controlled short crack growth and fatigue life. Int. J. Fatique 2005, 27, 1192–1201. [Google Scholar] [CrossRef]
- Polák, J. Mechanisms and kinetics of the early fatigue damage in crystalline materials. Mat. Sci. Eng. 2007, 468–470, 33–39. [Google Scholar] [CrossRef]
- Beretta, S.; Foletti, S.; Patriarca, L. Discussion of models for LCF small crack growth. Proc. Eng. 2011, 10, 3642–3649. [Google Scholar] [CrossRef] [Green Version]
- Radaj, D.; Vormwald, M. Advanced Methods of Fatigue Assessment; Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–265. [Google Scholar]
- Pippan, R.; Grosinger, W. Fatigue crack closure: From LCF to small scale yielding. Int. J. Fatique 2013, 46, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Rabbolini, S.; Beretta, S.; Foletti, S. Fatigue crack growth in low cycle fatigue: An analysis of crack closure based on image correlation. Proc. Struc. Int. 2016, 1, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Hutař, P.; Poduška, J.; Šmíd, M.; Kuběna, I.; Chlupová, A.; Náhlík, L.; Polák, J.; Kruml, T. Short fatigue crack behaviour under low cycle fatigue regime. Int. J. Fatique 2017, 103, 207–215. [Google Scholar] [CrossRef]
- Hutař, P.; Poduška, J.; Chlupová, A.; Šmíd, M.; Kruml, T.; Náhlík, L. Description of short fatigue crack propagation under low cycle fatigue regime. Proc. Struc. Int. 2016, 2, 3010–3017. [Google Scholar] [CrossRef] [Green Version]
- Mazánová, V.; Polák, J. Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel. Fat. Frac. Eng. Mat. Struct. 2018, 41, 1529–1545. [Google Scholar] [CrossRef]
- Polák, J.; Petráš, R.; Heczko, M.; Kuběna, I.; Kruml, T.; Chai, G. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature. Mat. Sci. Eng. 2014, 615, 175–182. [Google Scholar] [CrossRef]
- Li, Y. Fatigue Crack Initiation (in 304L steel): Influence of the Microstructure and Variable Amplitude Loading. Ph.D. Thesis, Ecole Centrale Paris, Paris, France, 2012. [Google Scholar]
- Yu, D.; An, K.; Chen, X.; Chen, X. Revealing the cyclic hardening mechanism of an austenitic stainless steel by real-time in situ neutron diffraction. Sci. Mat. 2014, 89, 45–48. [Google Scholar] [CrossRef]
- Obrtlík, K.; Polák, J. Fatigue growth of surface cracks in the elastic-plastic region. Fat. Frac. Eng. Mat. Struct. 1985, 8, 23–31. [Google Scholar] [CrossRef]
- Blochwitz, C.; Richter, R. Plastic strain amplitude dependent surface path of microstructurally short fatigue cracks in face-centred cubic metals. Mat. Sci. Eng. 1999, 267, 120–129. [Google Scholar] [CrossRef]
- Lindstedt, U.; Karlsson, B.; Nystr, M. Small fatigue cracks in an austenitic stainless steel. Fat. Frac. Eng. Mat. Struct. 2002, 21, 85–98. [Google Scholar] [CrossRef]
- Stolarz, J.; Baffie, N.; Magnin, T. Fatigue short crack behavior in metastable austenitic stainless steels with different grain sizes. Mat. Sci. Eng. 2001, 319–321, 521–526. [Google Scholar] [CrossRef]
- Roth, I.; Kübbeler, M.; Krupp, U.; Christ, H.-J.; Fritzen, C.-P. Crack initiation and short crack growth in metastable austenitic stainless steel in the high cycle fatigue regime. Proc. Eng. 2010, 2, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Weidner, A.; Glage, A.; Biermann, H. In-situ characterization of the microstructure evolution during cyclic deformation of novel cast TRIP steel. Proc. Eng. 2010, 2, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Roth, I.; Krupp, U.; Christ, H.-J.; Kübbeler, M.; Fritzen, C.-P. Deformation induced martensite formation in metastable austenitic steel during in situ fatigue loading in a scanning electron microscope. In Proceedings of the ESOMAT 2009—8th European Symposium on Martensitic Transformations, Prague, Czech Republic, 7 –11 September 2009; EDP Sciences: Les Ulis, France, 2009. [Google Scholar]
- Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth. J. Nucl. Mater. 2011, 412, 7–12. [Google Scholar] [CrossRef]
- Hartranft, R.J.; Sih, G.C. Stress singularity for a crack with an arbitrarily curved front. Eng. Fract. Mech. 1977, 9, 705–718. [Google Scholar] [CrossRef]
- Sih, G.C.; Lee, Y.D. Review of triaxial crack border stress and energy behavior. Theor. Appl. Fract. Mech. 1989, 12, 1–17. [Google Scholar] [CrossRef]
- Oplt, T.; Hutař, P.; Pokorný, P.; Náhlík, L.; Chlup, Z.; Berto, F. Effect of the free surface on the fatigue crack front curvature at high stress asymmetry. Int. J. Fatique 2019, 118, 249–261. [Google Scholar] [CrossRef]
- Dymáček, P.; Jarý, M.; Dobeš, F.; Kloc, L. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens. Materials 2018, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benthem, J.P. State of stress at the vertex of a quarter-infinite crack in a half-space. Int. J. Solid. Struct. 1977, 13, 479–492. [Google Scholar] [CrossRef]
- Pook, L.P. Some implications of corner point singularities. Eng. Fract. Mech. 1994, 48, 367–378. [Google Scholar] [CrossRef]
- Carpinteri, A. Part-through cracks in round bars under cyclic combined axial and bending loading. Int. J. Fatique 1996, 18, 33–39. [Google Scholar] [CrossRef]
- Hutař, P.; Náhlík, L.; Knésl, Z. The effect of a free surface on fatigue crack behaviour. Int. J. Fatique. 2010, 32, 1265–1269. [Google Scholar] [CrossRef]
- Náhlík, L.; Pokorný, P.; Ševčík, M.; Fajkoš, R.; Matušek, P.; Hutař, P. Fatigue lifetime estimation of railway axles. Eng. Fail. Anal. 2017, 73, 139–157. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 541–544. [Google Scholar]
- Simha, N.; Fischer, F.; Shan, G.; Chen, C.; Kolednik, O. J-integral and crack driving force in elastic–plastic materials. J. Mech. Phys. Solids. 2008, 56, 2876–2895. [Google Scholar] [CrossRef]
- Rice, J. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T. Fracture mechanics: Fundamentals and applications, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 103–120. [Google Scholar]
- Hutař, P.; Kuběna, I.; Ševčík, M.; Šmíd, M.; Kruml, T.; Náhlík, L. Small fatigue crack propagation in Y2O3 strengthened steels. J. Nucl. Mater. 2014, 452, 370–377. [Google Scholar] [CrossRef]
C | Cr | Ni | W | Co | Cu | Mn | Nb | N | Si | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 22.5 | 25 | 3.6 | 1.5 | 3 | 0.5 | 0.5 | 0.23 | 0.2 | Bal. |
C | Cr | Ni | Mn | S | P | Si | Fe |
---|---|---|---|---|---|---|---|
0.023 | 18.12 | 8.18 | 1.79 | 0.003 | 0.04 | 0.17 | Bal. |
Sanicro 25 | ||||||||||
εa (%) | 0.25 | 0.32 | 0.35 | 0.5 | 0.6 | 0.7 | ||||
mJp | 0.60 | 0.79 | 0.66 | 0.61 | 1.07 | 0.90 | ||||
CJp | 4.23 × 10−7 | 2.13 × 10−7 | 4.22 × 10−7 | 7.72 × 10−7 | 0.65 × 10−7 | 2.06 × 10−7 | ||||
304L | ||||||||||
εa (%) | 0.4 | 0.5 | 0.6 | 0.7 | ||||||
mJp | 0.94 | 1.14 | 1.08 | 0.82 | ||||||
CJp | 1.57 × 10−7 | 0.79 × 10−7 | 1.54 × 10−7 | 9.23 × 10−7 |
CJp | mJp | kg0 | d | |
---|---|---|---|---|
Sanicro 25 | 1.59 × 10−7 | 0.867 | 0.544 | 1.393 |
304L | 9.78 × 10−8 | 1.087 | 4191 | 2.8 |
Master Curve | 1.05 × 10−7 | 1.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trávníček, L.; Kuběna, I.; Mazánová, V.; Vojtek, T.; Polák, J.; Hutař, P.; Šmíd, M. Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties. Metals 2021, 11, 475. https://doi.org/10.3390/met11030475
Trávníček L, Kuběna I, Mazánová V, Vojtek T, Polák J, Hutař P, Šmíd M. Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties. Metals. 2021; 11(3):475. https://doi.org/10.3390/met11030475
Chicago/Turabian StyleTrávníček, Lukáš, Ivo Kuběna, Veronika Mazánová, Tomáš Vojtek, Jaroslav Polák, Pavel Hutař, and Miroslav Šmíd. 2021. "Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties" Metals 11, no. 3: 475. https://doi.org/10.3390/met11030475
APA StyleTrávníček, L., Kuběna, I., Mazánová, V., Vojtek, T., Polák, J., Hutař, P., & Šmíd, M. (2021). Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties. Metals, 11(3), 475. https://doi.org/10.3390/met11030475