Laser Welding of Grey Cast Iron with Spheroidal Graphite-Influence of Process Parameters on Crack Formation and Hardness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Process Setup
2.2. Microstructural Characterization and Hardness Testing
3. Results and Discussion
3.1. Microstructural Evolution, Crack Formation and Hardness Measurements
3.2. Effect of Filler Material
4. Conclusions
- High-energy LBW of grey cast iron with spheroidal graphite leads to substantial crack formation on top of the weld seam with an increase of welding speed, reaching crack densities of up to 2.93 cm−1 and 2.44 cm−1 in EN-GJS-400-15 and EN-GJS-700-2, respectively.
- Due to rapid cooling and steep thermal gradients, the microstructure is transformed to ledeburite within the WM.
- EN-GJS-400-15 does not show a prominent HAZ, while EN-GJS-700-2 exhibits the formation of a HAZ with martensite and bainite.
- The crack density of both materials is strongly dependent on the weld seam width as weld seam widths of approximately 2000 μm yield an almost doubled crack density when compared to weld seam widths of near 4000 μm
- The use of austenite-stabilizing filler material such as nickel-foil can alleviate cracking and reduce the hardness within the WM to maximum values of under 500 HV0.1 for both materials.
- Yet, the usage of nickel filler cannot hinder the hardness increase of the HAZ in EN-GJS-700-2, as it still reaches values of over 800 HV0.1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
area of laser beam, [cm2] | |
AOI | area of interest |
C | carbon |
energy input, [J mm−1] | |
fcc | face-centered cubic |
Fe | iron |
HAZ | heat-affected zone |
laser intensity, [W cm−2] | |
l | weld seam length, [] |
LBW | laser beam welding |
Mn | manganese |
number of cracks, [-] | |
OM | optical microscopy |
P | phosphorus |
laser power, [W] | |
R | crack density, [cm −1] |
coefficient of determination | |
S | sulfur |
Si | silicon |
SEM | standard error of the mean |
welding speed, [m min−1] | |
WM | weld metal |
wt.% | weight percent |
focal offset |
References
- Keough, J.R.; Hayrynen, K.L. Automotive Applications of Austempered Ductile Iron (ADI): A Critical Review. SAE Trans. 2000, 244–354. [Google Scholar] [CrossRef] [Green Version]
- Dilthey, U. Schweißtechnische Fertigungsverfahren 2: Verhalten der Werkstoffe beim Schweißen, 3rd ed.; Bearbeitete Auflage Ed.; VDI-Buch; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Forsström, A.; Yagodzinskyy, Y.; Hänninen, H. Hydrogen effects on mechanical performance of nodular cast iron. Corros. Rev. 2019, 37, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Sahiluoma, P.; Yagodzinskyy, Y.; Forsström, A.; Hänninen, H.; Bossuyt, S. Hydrogen embrittlement of nodular cast iron. Mater. Corros. 2021, 72, 245–254. [Google Scholar] [CrossRef]
- Askari-Paykani, M.; Shayan, M.; Shamanian, M. Weldability of Ferritic Ductile Cast Iron Using Full Factorial Design of Experiment. J. Iron Steel Res. Int. 2014, 21, 252–263. [Google Scholar] [CrossRef]
- Voigt, R.C.; Loper, C.R. A Study of Heat-Affected Zone Structures in Ductile Cast Iron; WRC: Shaker Heights, OH, USA, 1983. [Google Scholar]
- Pascual, M.; Cembrero, J.; Salas, F.; Martínez, M.P. Analysis of the weldability of ductile iron. Mater. Lett. 2008, 62, 1359–1362. [Google Scholar] [CrossRef]
- Rüthrich, K.; Zenker, R.; Mangler, M. Untersuchungen zum Elektronenstrahl-Mehrbadschweißen von Gusseisen in Verbindung mit Thermofeldern. DVS-Berichte 2011, 275, 113–121. [Google Scholar]
- Rüthrich, K.; Mangler, M. Elektronenstrahl-Mehrprozesstechnik – Schweißen mit integrierter Wärmebehandlung. HTM J. Heat Treat. Mater. 2012, 67, 22–30. [Google Scholar] [CrossRef]
- Rüthrich, K. Beitrag zur Entwicklung des Elektronenstrahl-Mehrspot/Mehrprozess-Schweißens von Gusseisen/Gusseisen- und Gusseisen/Stahl-Verbindungen ohne Schweißzusatzstoffe. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2014. [Google Scholar]
- Bünting, A.; Francke, S. Laserstrahlschweißen von Gusseisen und Einsatzstahl ohne Zusatzwerkstoff. DVS-Berichte 2010, 212–214. [Google Scholar]
- Yu, J.; Jung, T.; Kim, S.; Rhee, S. Laser welding of cast iron and carburized steel for differential gear. J. Mech. Sci. Technol. 2011, 25, 2887–2893. [Google Scholar] [CrossRef]
- Vollmer, M.; Mienert, G.; Fehlbier, M.; Böhm, S.; Niendorf, T. Induction-assisted laser beam welding of cast iron materials – Microstructure and mechanical properties. Weld. Cut. 2017, 16, 316–320. [Google Scholar]
- Saffer, J.; Dörres, T.; Schaumberger, K.; Ermer, J.; Kaufmann, F.; Wittmann, A.; Roth, S.; Schmidt, M. Laser beam welding of heat-resistant mixed joints using laser-based pre- and post-heating. Procedia CIRP 2020, 94, 671–675. [Google Scholar] [CrossRef]
- Janicki, D. Direct Diode Laser Surface Melting of Nodular Cast Iron. Appl. Mech. Mater. 2015, 809–810, 423–428. [Google Scholar] [CrossRef]
- Janicki, D.; Górka, J.; Kwaśny, W.; Pakieła, W.; Matus, K. Influence of Solidification Conditions on the Microstructure of Laser-Surface-Melted Ductile Cast Iron. Materials 2020, 13, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janicki, F. Fabrication of High Chromium White Iron Surface Layers on Ductile Cast Iron Substrate by Laser Surface Alloying. Stroj. Vestn. J. Mech. Eng. 2017, 63, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Litfin, G. Technische Optik in der Praxis (German Edition); Springer: Dordrecht, The Netherland, 2005. [Google Scholar]
- Dilthey, U. Schweißtechnische Fertigungsverfahren 1: Schweiß-und Schneidtechnologien, 3rd ed.; Bearbeitete Auflage Ed.; VDI-Buch; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. Zerstörungsfreie Prüfung Eindringprüfung: Teil 1: Allgemeine Grundlagen (ISO/DIS 3452-1:2019); Deutsche und Englische Fassung prEN ISO 3452-1:2019; Deutsches Institut für Normung e.V.: Koblenz, Germany, 2020. [Google Scholar]
- Deutsches Institut für Normung e.V. Metallische Werkstoffe - Härteprüfung nach Vickers: Teil 1: Prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1:2018; Deutsches Institut für Normung e.V.: Koblenz, Germany, 2018. [Google Scholar]
Alloy | C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|---|
EN-GJS-400-15 | 3.5 | 2.1 | 0.2 | 0.04 | 0.01 | bal. |
EN-GJS-700-2 | 3.5 | 2.0 | 0.25 | 0.04 | 0.01 | bal. |
Welding Speed [−1] | |||||
---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | |
Laser Power [] | 2700 | 4700 | 5900 | 6300 | 6000 |
3000 | 5200 | 6500 | 7000 | 6700 | |
3300 | 5700 | 7200 | 7700 | 7400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, N.; Lehto, J.M.; Völkers, S.; Böhm, S. Laser Welding of Grey Cast Iron with Spheroidal Graphite-Influence of Process Parameters on Crack Formation and Hardness. Metals 2021, 11, 532. https://doi.org/10.3390/met11040532
Sommer N, Lehto JM, Völkers S, Böhm S. Laser Welding of Grey Cast Iron with Spheroidal Graphite-Influence of Process Parameters on Crack Formation and Hardness. Metals. 2021; 11(4):532. https://doi.org/10.3390/met11040532
Chicago/Turabian StyleSommer, Niklas, John Michael Lehto, Stephan Völkers, and Stefan Böhm. 2021. "Laser Welding of Grey Cast Iron with Spheroidal Graphite-Influence of Process Parameters on Crack Formation and Hardness" Metals 11, no. 4: 532. https://doi.org/10.3390/met11040532
APA StyleSommer, N., Lehto, J. M., Völkers, S., & Böhm, S. (2021). Laser Welding of Grey Cast Iron with Spheroidal Graphite-Influence of Process Parameters on Crack Formation and Hardness. Metals, 11(4), 532. https://doi.org/10.3390/met11040532