Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Microstructures
2.2. Carbide and Nitride Precipitation
2.3. Test Procedures
2.3.1. Accelerated Creep Tests
2.3.2. Friction Tests
2.3.3. Wear Tests
3. Results
3.1. Initial State (Influence of Microstructure/Grain Size)
3.2. After Aging (Influence of Precipitates Coarsening)
4. Discussion
5. Conclusions
- Both prior to and after aging, the P91 steel typically provided significantly higher creep resistance than the X20 steel, while the latter provided slightly better tribological performance (lower friction and wear).
- Prior to aging, the stationary creep rate, wear, and friction of both steels decreased with the increase in grain size, i.e., the values were typically the highest for α + γ and the lowest for γ microstructure.
- After aging for a shorter time at higher temperature, α + γ and α microstructures of the X20 steel showed lower primary creep strain compared to longer aging time at lower temperature, while for γ microstructure of the X20 steel, an opposite trend was observed. On the other hand, for the P91 steel, aging for a shorter time at the higher temperature increased the primary creep strain of α and α + γ microstructures, while it had no influence on γ microstructure.
- For both steels, aging for a shorter time at the higher temperature yielded significantly higher stationary creep rate values as compared to aging for a longer time at the lower temperature. The increase was more pronounced in the P91 than in the X20 steel.
- For both steels, as a function of the increasing number of precipitates, static coefficient of friction in air atmosphere was approximately linearly decreasing, while the wear rate initially decreased, showed a minimum value at around 8 precipitates per μm2, and then started to increase.
- For the primary creep strain, no general trend related to the number of precipitates was observed; however, for both steels, a significant decrease of the stationary creep rate was observed in the range of around 0.5 to 6 precipitates per μm2, while for higher number of precipitates, the stationary creep rates remained very low and no significant changes were observed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Gianfrancesco, A.; Vipraio, S.T.; Venditti, D. Long Term Microstructural Evolution of 9–12%Cr Steel Grades for Steam Power Generation Plants. Procedia Eng. 2013, 55, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, B.; Zhu, J.; Li, W.; Zheng, Z. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment. Appl. Surf. Sci. 2016, 379, 39–46. [Google Scholar] [CrossRef]
- Schönbauer, B.M.; Perlega, A.; Karr, U.P.; Gandy, D.; Stanzl-Tschegg, S.E. Pit-to-crack transition under cyclic loading in 12% Cr steam turbine blade steel. Int. J. Fatigue 2015, 76, 19–32. [Google Scholar] [CrossRef]
- Metsäjoki, J.; Huttunen-Saarivirta, E.; Lepistö, T. Elevated-temperature corrosion of uncoated and aluminized 9–12% Cr boiler steels beneath KCl deposit. Fuel 2014, 133, 173–181. [Google Scholar] [CrossRef]
- Hald, J. Microstructure and long-term creep properties of 9–12% Cr steels. Int. J. Press. Vessel. Pip. 2008, 85, 30–37. [Google Scholar] [CrossRef]
- Abe, F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 2008, 9, 013002. [Google Scholar] [CrossRef] [Green Version]
- Rojas, D.; Garcia, J.; Prat, O.; Sauthoff, G.; Kaysser-Pyzalla, A. 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650 °C. Mater. Sci. Eng. A 2011, 528, 5164–5176. [Google Scholar] [CrossRef]
- Yadav, S.D.; El-Tahawy, M.; Kalácska, S.; Dománková, M.; Yubero, D.C.; Poletti, C. Characterizing dislocation configurations and their evolution during creep of a new 12% Cr steel. Mater. Charact. 2017, 134, 387–397. [Google Scholar] [CrossRef]
- Žužek, B.; Podgornik, B.; Kafexhiu, F. Development of microstructure and creep resistance of a martensitic creep resistant steel. Int. J. Microstruct. Mater. Prop. 2017, 12, 301. [Google Scholar] [CrossRef]
- Lucacci, G. Steels and alloys for turbine blades in ultra-supercritical power plants. In Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 175–196. [Google Scholar]
- Schönbauer, B.M.; Stanzl-Tschegg, S.E.; Perlega, A.; Salzman, R.N.; Rieger, N.F.; Zhou, S.; Turnbull, A.; Gandy, D. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. Int. J. Fatigue 2014, 65, 33–43. [Google Scholar] [CrossRef]
- Asai, K. Fretting fatigue strength of 12% Cr steel under high local contact pressure and its fracture mechanics analysis. Procedia Eng. 2010, 2, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Di Gianfrancesco, A. (Ed.) Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, 1st ed.; Woodhead Publishing series in energy; Woodhead Publishing: Cambridge, UK, 2016; ISBN 978-0-08-100558-3. [Google Scholar]
- Peng, Y.-Q.; Chen, T.-C.; Chung, T.-J.; Jeng, S.-L.; Huang, R.-T.; Tsay, L.-W. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel. Materials 2017, 10, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Chen, B.; Wang, C. In Situ Observation of Phase Transformations in the Coarse-Grained Heat-Affected Zone of P91 Heat-Resistant Steel During Simulated Welding Process. Met. Mater. Trans. A 2020, 51, 3371–3376. [Google Scholar] [CrossRef]
- Mariappan, K.; Shankar, V.; Bhaduri, A.K. Comparative evaluation of tensile properties of simulated heat affected zones of P91 steel weld joint. Mater. High Temp. 2020, 37, 114–128. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Y.; Zhao, J. Elastoplastic Fracture Analysis of the P91 Steel Welded Joint under Repair Welding Thermal Shock Based on XFEM. Metals 2020, 10, 1285. [Google Scholar] [CrossRef]
- Lojen, G.; Vuherer, T. Optimization of PWHT of Simulated HAZ Subzones in P91 Steel with Respect to Hardness and Impact Toughness. Metals 2020, 10, 1215. [Google Scholar] [CrossRef]
- Smith, A.; Asadikiya, M.; Yang, M.; Chen, J.; Zhong, Y. An Investigation of Creep Resistance in Grade 91 Steel through Computational Thermodynamics. Engineering 2020, 6, 644–652. [Google Scholar] [CrossRef]
- Kafexhiu, F.; Burja, J. Evaluation of Stationary Creep Rate in Heat-Affected Zone of Martensitic 9–12% Cr Steels. Metals 2020, 10, 1612. [Google Scholar] [CrossRef]
- Abson, D.J.; Rothwell, J.S. Review of type IV cracking of weldments in 9–12%Cr creep strength enhanced ferritic steels. Int. Mater. Rev. 2013, 58, 437–473. [Google Scholar] [CrossRef]
- Mayr, P. Evolution of Microstructure and Mechanical Properties of the Heat Affected Zone in B-Containing 9% Chromium Steels; Graz University of Technology: Graz, Austria, 2007. [Google Scholar]
- Cerjak, H.-H.; Mayr, P. Creep strength of welded joints of ferritic steels. In Creep-Resistant Steels; Abe, F., Kern, T.-U., Viswanathan, R., Eds.; Woodhead Publishing Limited: Cambridge, UK; CRC Press LLC: Boca Raton, FL, USA, 2008; pp. 472–503. [Google Scholar]
- Cerjak, H.-H.; Holzer, I.; Mayr, P.; Pein, C.; Sonderegger, B.; Kozeschnik, E. The Relation between Microstructure and Creep Properties of Martensitic 9–12% Cr Steels. In Proceedings of the New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires, Argentina, 26–28 May 2008; pp. 247–265. [Google Scholar]
- Kafexhiu, F.; Vodopivec, F.; Podgornik, B. Analysis of Primary Creep in Simulated Heat Affected Zone (HAZ) of Two 9–12% Cr Steel Grades. Metalurgija 2017, 56, 353–356. [Google Scholar]
- Kafexhiu, F.; Podgornik, B.; Vodopivec, F. Ageing effect on the creep performance of simulated weld HAZ for the steels X20 and P91. MATEC Web Conf. 2018, 188, 03004. [Google Scholar] [CrossRef]
- Skobir, D.A.; Vodopivec, F.; Kosec, L.; Jenko, M.; Vojvodič-Tuma, J. Influence of Precipitates Size and Distribution on Room Temperature Mechanical Properties and Accelerated Creep of X20CrMoV121. Steel Res. Int. 2004, 75, 196–203. [Google Scholar] [CrossRef]
- Liu, X.; Fan, P.; Zhu, L. Characterization of dislocation evolution during creep of 9Cr 1Mo steel using internal friction measurement. Mater. Charact. 2019, 150, 98–106. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Almer, J.D. Dislocation evolution during tensile deformation in ferritic–martensitic steels revealed by high-energy X-rays. Acta Mater. 2014, 76, 381–393. [Google Scholar] [CrossRef]
- Panait, C.G.; Zielińska-Lipiec, A.; Koziel, T.; Czyrska-Filemonowicz, A.; Gourgues-Lorenzon, A.-F.; Bendick, W. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600C for more than 100,000h. Mater. Sci. Eng. A 2010, 527, 4062–4069. [Google Scholar] [CrossRef] [Green Version]
- Morsdorf, L.; Jeannin, O.; Barbier, D.; Mitsuhara, M.; Raabe, D.; Tasan, C. Multiple mechanisms of lath martensite plasticity. Acta Mater. 2016, 121, 202–214. [Google Scholar] [CrossRef]
- Shibata, A.; Nagoshi, T.; Sone, M.; Morito, S.; Higo, Y. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater. Sci. Eng. A 2010, 527, 7538–7544. [Google Scholar] [CrossRef]
- Morito, S.; Adachi, Y.; Ohba, T. Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel. Mater. Trans. 2009, 50, 1919–1923. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, I.; Belyakov, A.; Kozlov, P.; Skorobogatykh, V.; Shenkova, I.; Kaibyshev, R. Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K. Mater. Sci. Eng. A 2014, 615, 153–163. [Google Scholar] [CrossRef]
- Isik, M.; Kostka, A.; Yardley, V.; Pradeep, K.; Duarte, M.; Choi, P.; Raabe, D.; Eggeler, G. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater. 2015, 90, 94–104. [Google Scholar] [CrossRef]
- Velkavrh, I.; Kafexhiu, F.; Klien, S.; Diem, A.; Podgornik, B. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear. Met. Mater. Trans. A 2017, 48, 109–125. [Google Scholar] [CrossRef]
- Velkavrh, I.; Kafexhiu, F.; Klien, S.; Ausserer, F.; Voyer, J.; Diem, A.; Podgornik, B. The influence of carbide coarsening on the friction properties of thermally affected 9–12 wt. % Cr steels. J. Phys. Conf. Ser. 2017, 843, 012065. [Google Scholar] [CrossRef]
- Beausir, J.-J.F.B. ATEX ©–Analysis Tools for Electron and X-ray Diffraction; Université de Lorraine: Metz, France, 2017. [Google Scholar]
- Altendorf, H.; Faessel, M.; Jeulin, D.; Latourte, F. Direct estimation of austenitic grain dimensions in heat affected zones of a martensitic steel from EBSD images. J. Microsc. 2015, 258, 87–104. [Google Scholar] [CrossRef] [PubMed]
- GIMP–GNU Image Manipulation Program, Free Software. Available online: https://www.gimp.org/ (accessed on 22 December 2020).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Velkavrh, I.; Ausserer, F.; Klien, S.; Voyer, J.; Ristow, A.; Brenner, J.; Forêt, P.; Diem, A. The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres. Tribol. Int. 2016, 98, 155–171. [Google Scholar] [CrossRef]
- Cabrera, N.; Mott, N.F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163–184. [Google Scholar] [CrossRef]
- Dinh, C.; Marriner, B.; Tadros, R.; Kim, S.Y.; Farineau, T. Design and Operation of Large Fossil-Fueled Steam Turbines in Cyclic Duty; General Electric Company: Boston, MA, USA, 2016; p. 9. [Google Scholar]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Velkavrh, I.; Ausserer, F.; Klien, S.; Brenner, J.; Forêt, P.; Diem, A. The effect of gaseous atmospheres on friction and wear of steel–steel contacts. Tribol. Int. 2014, 79, 99–110. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Ma, M.; Li, J. Effect of precipitated carbides on the fretting wear behavior of Inconel 600 alloy. Wear 2014, 315, 58–67. [Google Scholar] [CrossRef]
Element | X20 (wt.%) | P91 (wt.%) |
---|---|---|
C | 0.20 | 0.10 |
Si | 0.29 | 0.38 |
Mn | 0.52 | 0.48 |
P | 0.019 | 0.012 |
S | 0.011 | 0.002 |
Cr | 11.0 | 7.9 |
Ni | 0.64 | 0.26 |
Mo | 0.94 | 0.98 |
V | 0.31 | 0.23 |
Cu | 0.059 | 0.14 |
Nb | 0.024 | 0.11 |
Al | 0.032 | 0.016 |
N | 0.017 | 0.064 |
Parameter | Wear Tests | Friction Tests |
---|---|---|
Normal force (N) | 30 | 30 |
Hertzian contact pressure (GPa) | 0.98 (mean), 1.46 (maximum) | 0.98 (mean), 1.46 (maximum) |
Oscillation frequency (Hz) | 20 | 0.125 |
Oscillation amplitude (mm) | 2 | 2 |
Maximum velocity (mm/s) | 126 | 1.6 |
Duration (min) | 15 | 4 |
Number of cycles | 18,000 | 20 |
Temperature (°C) | 24 (ambient temperature) | 24 (ambient temperature) |
Interfacial medium | none (dry) | none (dry) |
Atmosphere | Air | Ar (2 min), air (2 min) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velkavrh, I.; Voyer, J.; Kafexhiu, F.; Podgornik, B. Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels. Metals 2021, 11, 558. https://doi.org/10.3390/met11040558
Velkavrh I, Voyer J, Kafexhiu F, Podgornik B. Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels. Metals. 2021; 11(4):558. https://doi.org/10.3390/met11040558
Chicago/Turabian StyleVelkavrh, Igor, Joël Voyer, Fevzi Kafexhiu, and Bojan Podgornik. 2021. "Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels" Metals 11, no. 4: 558. https://doi.org/10.3390/met11040558
APA StyleVelkavrh, I., Voyer, J., Kafexhiu, F., & Podgornik, B. (2021). Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels. Metals, 11(4), 558. https://doi.org/10.3390/met11040558