Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning
Abstract
:1. Introduction
2. Overall Process to Design New Alloys
2.1. Database Collection
2.2. ANN Model Learning
2.3. Inverse Design
2.4. Experimental Verification
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, L.; O’Keeffe, S.C.; Stevick, J.; Jelbert, G.R.; Aykol, M.; Wolverton, C. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 2018, 159, 102–111. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Jia, Z.; Lyu, F.; Liang, S.-X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Q.; Sun, L.; Wang, Q.; Zhang, L.-C.; Wu, G.; Luan, J.-H.; Jiao, Z.-B.; Wang, A.; Liang, S.-X.; et al. Attractive in situ Self-Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance. Adv. Funct. Mater. 2019, 29, 1807857. [Google Scholar] [CrossRef]
- Jia, Z.; Duan, X.; Qin, P.; Zhang, W.; Wang, W.; Yang, C.; Sun, H.; Wang, S.; Zhang, L.-C. Disordered Atomic Packing Structure of Metallic Glasses: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Adv. Funct. Mater. 2017, 27, 1702258. [Google Scholar] [CrossRef]
- Park, E.S.; Lim, H.K.; Kim, W.T.; Kim, D.H. The effect of Sn addition on the glass-forming ability of Cu-Ti-Zr-Ni-Si metallic glass alloys. J. Non-Cryst. Solids 2002, 298, 15–22. [Google Scholar] [CrossRef]
- Park, E.S.; Kang, H.G.; Kim, W.T.; Kim, D.H. The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys. J. Non-Cryst. Solids 2001, 279, 154–160. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.F.; Löser, W.; Eckert, J. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater. 2003, 51, 2383–2395. [Google Scholar] [CrossRef]
- Gong, P.; Yao, K.; Zhao, S. Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. J. Therm. Anal. Calorim. 2015, 121, 697–704. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, W.T.; Kim, D.H.; Kim, Y.B. The effect of Al addition on the thermal properties and crystallization behavior of Ni60Nb40 metallic glass. Mater. Sci. Eng. A 2004, 375–377, 336–340. [Google Scholar] [CrossRef]
- Yuan, G.; Inoue, A. The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. J. Alloy Compd. 2005, 387, 134–138. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.J. Prediction of Jominy curve using artificial neural network. J. Korean Soc. Heat Treat. 2018, 31, 1–5. [Google Scholar]
- Seo, N.; Jeon, J.; Choi, S.; Moon, Y.H.; Shon, I.J.; Lee, S.J. Microstructural and mechanical characteristics of non-equiatomic high entropy alloy FeMnCoCr Prepared by spark plasma sintering. Arch. Metall. Mater. 2020, 3, 1005–1009. [Google Scholar]
- Choi, S.; Jeon, J.; Seo, N.; Moon, Y.H.; Shon, I.J.; Lee, S.J. Effect of composition on strain-induced martensite transformation of FeMnNiC alloys fabricated by powder metallurgy. Arch. Metall. Mater. 2020, 3, 1001–1004. [Google Scholar]
- Jeon, J.; Choi, S.; Seo, N.; Moon, Y.H.; Shon, I.J.; Lee, S.J. Effect of TiC addition on strain-induced martensite transformation and mechanical properties of nanocrystalline Fe-Mn alloy fabricated by spark plasma sintering. Arch. Metall. Mater. 2020, 4, 1249–1254. [Google Scholar]
- Jung, H.Y.; Yi, S. Enhanced glass forming ability and soft magnetic properties through an optimum Nb addition to a Fe-C-Si-B-P bulk metallic glass. Intermetallics 2010, 18, 1936–1940. [Google Scholar] [CrossRef]
- Li, C.; Inoue, A. Effect of Zn addition on the crystallization process in Zr65Al7.5Ni10Cu17.5 metallic glass. J. Alloy Compd. 2001, 325, 230–235. [Google Scholar] [CrossRef]
- Asami, K.; Qin, C.L.; Zhang, T.; Inoue, A. Effect of additional elements on the corrosion behaviour of a Cu-Zr-Ti bulk metallic glass. Mater. Sci. Eng. A 2004, 375–377, 235–239. [Google Scholar] [CrossRef]
- Gong, P.; Yao, K.F.; Shao, Y. Effects of Fe addition on glass-forming ability and mechanical properties of Ti-Zr-Be bulk metallic glass. J. Alloy Compd. 2012, 536, 26–29. [Google Scholar] [CrossRef]
- Bing, L.; Yanhong, L.; Ke, Y.; Jinshan, L.; Xinhui, F. Effect of yttrium addition on the non-isothermal crystallizationkinetics and fragility of Cu-Zr-Al bulk metallic glass. Thermochim. Acta 2016, 642, 105–110. [Google Scholar] [CrossRef]
- Keong, K.G.; Sha, W.; Malinov, S. Artificial neural network modelling of crystallization temperatures of the Ni-P based amorphous alloys. Mater. Sci. Eng. A 2004, A365, 212–218. [Google Scholar] [CrossRef]
- Cai, A.H.; Xiong, X.; Liu, Y.; An, W.K.; Tan, J.Y. Artificial neural network modeling of reduced glass transition temperature of glass forming alloys. Appl. Phys. Lett. 2008, 92, 11909. [Google Scholar] [CrossRef]
- Ren, F.; Ward, L.; Williams, T.; Laws, K.J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 2018, 4, eaaq1566. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.H.; Xiong, X.; An, W.K.; Tan, J.Y.; Luo, Y. Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comp. Mater. Sci. 2010, 48, 109–114. [Google Scholar] [CrossRef]
- Sosso, G.C.; Deringer, V.L.; Elliott, S.R.; Csányi, G. Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Mol. Simul. 2018, 44, 866. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Shi, S.Q.; Zhang, T.Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 2020, 187, 108378. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bernstein, N.; Bartók, A.P.; Cliffe, M.J.; Kerber, R.N.; Marbella, L.E.; Grey, C.P.; Elliott, S.R.; Csányi, G. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 2018, 9, 2879–2885. [Google Scholar] [CrossRef]
- Majid, A.; Ahsan, S.B.; Tariq, N.U.H. Modeling glass-forming ability of bulk metallic glasses using computational intelligent techniques. Appl. Soft Comput. 2015, 28, 569–578. [Google Scholar] [CrossRef]
- Wang, Q.; Jain, A. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. Nat. Commun. 2019, 10, 5537. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S. Evolutionary intelligence in combinatorial design and synthesis of bulk metallic glasses by mechanical alloying. Mater. Manuf. Processes. 2017, 32, 1056–1066. [Google Scholar] [CrossRef]
- Cai, A.H.; Liu, Y.; An, W.K.; Zhou, G.J.; Luo, Y.; Li, T.L.; Li, X.S.; Tan, X.F. Prediction of critical cooling rate for glass forming alloys by artificial neural network. Mater. Des. 2013, 52, 671–676. [Google Scholar] [CrossRef]
- Kumar, S.D.V.; Karuppanan, S.; Ovinis, M. Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN). Metals 2021, 11, 373. [Google Scholar] [CrossRef]
- Jha, R.; Dulikravich, G.S. Discovery of new Ti-based alloys aimed at avoiding/minimizing formation of α’’ and ω-phase using CALPHAD and artificial intelligence. Metals 2021, 11, 15. [Google Scholar] [CrossRef]
- Jedamski, R.; Epp, J. Non-destructive micromagnetic determination of hardness and case hardening depth using linear regression analysis and artificial neural networks. Metals 2021, 11, 18. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Gradually tunable conductance in TiO2/Al2O3 bilayer resistors for synaptic device. Metals 2021, 11, 440. [Google Scholar] [CrossRef]
- Osman, I.H.; Kelly, J.P. Meta-Heuristics: An Overview; Kluwer Academic Publishers: Boston, MA, USA, 1996. [Google Scholar]
- Anijdan, S.H.M.; Bahrami, A.; Hosseini, H.R.M.; Shafyei, A. Using genetic algorithm and artificial neural network analyses to design an Al–Si casting alloy of minimum porosity. Mater. Des. 2006, 27, 605–609. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Behnagh, R.A.; Akbari, M.; Givi, M.K.B.; Farhani, F. Modelling and pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater. Des. 2013, 44, 190–198. [Google Scholar] [CrossRef]
- Ikeda, Y. A new method of alloy design using a genetic algorithm and molecular dynamics simulation and its application to Nickel-based superalloys. Mater. Trans. JIM 1997, 38, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Song, R.G.; Zhang, Q.Z. Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm. J. Mater. Process. Technol. 2001, 117, 84–88. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, W.; Ma, X.; Xu, B.; Liang, X.; Zhang, J. A hybrid approach for processing parameters optimization of Ti-22Al-25Nb alloy during hot deformation using artificial neural network and genetic algorithm. Intermetallics 2011, 19, 1014–1019. [Google Scholar] [CrossRef]
- Babu, K.K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C.V. Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modelling with genetic algorithm. Int. J. Adv. Manuf. Technol. 2018, 94, 3117–3129. [Google Scholar] [CrossRef]
- Huang, C.; Jia, X.; Zhang, Z. A modified back propagation artificial neural network model based on genetic algorithm to predict the flow behavior of 5754 Aluminum alloy. Materials 2018, 11, 855. [Google Scholar] [CrossRef] [Green Version]
- Yekta, P.V.; Honar, F.J.; Fesharaki, M.N. Modelling of hysteresis loop and magnetic behaviour of Fe-48Ni alloys using artificial neural network coupled with genetic algorithm. Comput. Mater. Sci. 2019, 159, 349–356. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Inoue, A. Iron-based bulk metallic glasses. Int. Mater. Rev. 2013, 58, 131–166. [Google Scholar] [CrossRef]
- Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog. Mater. Sci. 2019, 103, 235–318. [Google Scholar] [CrossRef]
Variable | Minimum | Maximum | Average | Deviation |
---|---|---|---|---|
Cr (at.%) | 0 | 16 | 2.7 | 5.0 |
Mn (at.%) | 0 | 19.5 | 1.2 | 4.6 |
Mo (at.%) | 0 | 16 | 4.7 | 5.4 |
B (at.%) | 0 | 24 | 12.3 | 7.7 |
C (at.%) | 0 | 18 | 5.0 | 6.0 |
Ni (at.%) | 0 | 36 | 0.7 | 3.9 |
Co (at.%) | 0 | 36 | 3.9 | 7.4 |
W (at.%) | 0 | 4 | 0.2 | 0.5 |
P (at.%) | 0 | 13 | 3.0 | 4.6 |
Si (at.%) | 0 | 9.9 | 1.4 | 2.3 |
Y (at.%) | 0 | 6 | 1.0 | 1.7 |
Zr (at.%) | 0 | 10 | 1.6 | 3.4 |
Al (at.%) | 0 | 4 | 0.2 | 0.6 |
Nb (at.%) | 0 | 8 | 1.2 | 1.9 |
Hf (at.%) | 0 | 5 | 0.2 | 1.0 |
Tx (°C) | 455 | 715 | 550.0 | 55.6 |
Tg (°C) | 374 | 645 | 600.8 | 68.0 |
Variable | AP1 | AP2 | AP3 | AP4 |
---|---|---|---|---|
Cr (at.%) | 0.6 | 0.2 | 0.3 | 0 |
Mo (at.%) | 2.6 | 1.4 | 1.6 | 8.6 |
B (at.%) | 20.2 | 20.1 | 22.1 | 25.6 |
C (at.%) | 12.8 | 9.9 | 10.2 | 9.8 |
Mn (at.%) | 0 | 12.1 | 0 | 0 |
Ni (at.%) | 0 | 0 | 1.0 | 0 |
P (at.%) | 0 | 0 | 0 | 5.4 |
Fe (at.%) | Bal. | Bal. | Bal. | Bal. |
Tx_cal (°C) | 568.5 | 571.5 | 572.3 | 624.1 |
Tg_cal (°C) | 564.0 | 530.2 | 557.6 | 610.9 |
Tx_exp (°C) | 587.4 | 590.6 | 605.6 | 589.7 |
Tg_exp (°C) | 548.3 | 529.7 | 568.8 | 553.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Seo, N.; Kim, H.-J.; Lee, M.-H.; Lim, H.-K.; Son, S.B.; Lee, S.-J. Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning. Metals 2021, 11, 729. https://doi.org/10.3390/met11050729
Jeon J, Seo N, Kim H-J, Lee M-H, Lim H-K, Son SB, Lee S-J. Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning. Metals. 2021; 11(5):729. https://doi.org/10.3390/met11050729
Chicago/Turabian StyleJeon, Junhyub, Namhyuk Seo, Hwi-Jun Kim, Min-Ha Lee, Hyun-Kyu Lim, Seung Bae Son, and Seok-Jae Lee. 2021. "Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning" Metals 11, no. 5: 729. https://doi.org/10.3390/met11050729
APA StyleJeon, J., Seo, N., Kim, H. -J., Lee, M. -H., Lim, H. -K., Son, S. B., & Lee, S. -J. (2021). Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning. Metals, 11(5), 729. https://doi.org/10.3390/met11050729